

Project Partners: Easy Global Market, GMV, Intecs, The Open Group, University of Stuttgart,
 University of York, Unparallel Innovation, WINGS ICT Solutions

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

PHANTOM Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the PHANTOM Project Partners.

Project Number 688146

D5.5 – Final developers’ documentation

Version 1.2

17 May 2019

Final

Public Distribution

University of York, Easy Global Market, GMV, Intecs,
The Open Group, University of Stuttgart,

Unparallel Innovation, WINGS ICT Solutions

D5.5 – Final developers‟ documentation

Page ii Version 1.2 17 May 2019

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Easy Global Market

Philippe Cousin

2000 Route des Lucioles

Les Algorithmes Batiment A

06901 Sophia Antipolis

France

Tel: +33 6804 79513

E-mail: philippe.cousin@eglobalmark.com

GMV
José Neves

Av. D. João II, Nº 43

Torre Fernão de Magalhães, 7º

1998 - 025 Lisbon

Portugal

Tel. +351 21 382 93 66

E-mail: jose.neves@gmv.com

Intecs

Silvia Mazzini

Via Umberto Forti 5

Loc. Montacchiello

56121 Pisa

Italy

Phone: +39 050 9657 513

E-mail: silvia.mazzini@intecs.it

The Open Group

Scott Hansen

Rond Point Schuman 6

5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of Stuttgart

Bastian Koller

Nobelstrasse 19

70569 Stuttgart

Germany

Tel: +49 711 68565891

E-mail: koller@hlrs.de

University of York

Neil Audsley

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325571

E-mail: neil.audsley@cs.york.ac.uk

Unparallel Innovation

Bruno Almeida

Rua das Lendas Algarvias, Lote 123

8500-794 Portimão

Portugal

Tel: +351 282 485052

E-mail: bruno.almeida@unparallel.pt

WINGS ICT Solutions

Panagiotis Vlacheas

336 Syggrou Avenue

17673 Athens

Greece

Tel: +30 211 012 5223

E-mail: panvlah@wings-ict-solutions.eu

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.8 First release for internal review 27/02/2019

0.9 Updates reflecting integrations and use case feedback 28/03/2019

1.0 Further partner updates 01/04/2019

1.1 Final Release 02/04/2019

1.2 Final Release with EC required updates 17/05/2019

D5.5 – Final developers‟ documentation

Page iv Version 1.2 17 May 2019

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 9

2. Getting Started .. 9

2.1 Creating a PHANTOM application .. 9
2.1.1 Defining the Application Model ... 9
2.1.2 Defining the System Model .. 11
2.1.3 Creating application components .. 12
2.1.4 Using the Programming Interface and code annotations ... 12

2.2 Using the Integrated Reference System Virtual machine .. 15

3. Programming Model ... 21

3.1 Application Model .. 21
3.1.1 Components .. 21
3.1.2 Communication Objects .. 21

3.2 Description Models ... 22

3.3 Programming Interface – Monitoring Library ... 23

3.4 Data Transfers .. 24

3.5 File Operations ... 24

3.6 Optimization Annotations ... 25

3.7 Placing developer’s application in the PHANTOM Repository ... 25

4. Deployment Guides ... 27

4.1 Repository ... 27
4.1.1 Prerequisites .. 27
4.1.2 Dependencies .. 27
4.1.3 Installation .. 27
4.1.4 Start/Stop the server .. 28
4.1.5 Configuration of USERS' accounts ... 28
4.1.6 Reference manual of the RESTful API ... 29

4.2 Parallelisation Toolset (PT) ... 29
4.2.1 System requirements ... 29
4.2.2 Dependencies .. 30
4.2.3 Lite vs Full version ... 30
4.2.4 Deployment Procedure .. 30
4.2.5 Configuration Guide ... 30
4.2.6 Usage Guide .. 31
4.2.7 Coordination with other components .. 31

4.3 IP Core Generator .. 32
4.3.1 System requirements ... 32
4.3.2 Dependencies .. 32
4.3.3 Deployment Procedure .. 32
4.3.4 Configuration Guide ... 33
4.3.5 Usage Guide .. 34
4.3.6 Manual usage .. 34

4.4 IP Core Marketplace .. 34
4.4.1 Dependencies .. 35
4.4.2 Installation Guide .. 35
4.4.3 Usage Guide .. 35

4.5 Multi Objective Mapper (MOM)... 36
4.5.1 System requirements ... 36
4.5.2 Dependencies .. 36
4.5.3 Lite vs Full version ... 36
4.5.4 Deployment Procedure .. 36
4.5.5 Configuration Guide ... 36

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page v

Confidentiality: Public Distribution

4.5.6 Usage Guide .. 37
4.5.7 Coordination with other components .. 37

4.6 Offline Multi Objective Mapper (Offline MOM)... 38

4.7 Deployment Manager (DM) ... 40

4.8 PHANTOM FPGA Linux Software Distribution ... 42
4.8.1 Installation .. 42
4.8.2 PHANTOM-compatible IP Cores ... 46
4.8.3 Building images from sources ... 46
4.8.4 Support files for additional boards, etc. .. 50
4.8.5 Running a full build from sources ... 50

4.9 Monitoring Framework – Server .. 51
4.9.1 Introduction ... 51
4.9.2 Prerequisites .. 52
4.9.3 Dependencies .. 52
4.9.4 Installation .. 52
4.9.5 Start/Stop the server .. 52
4.9.6 Reference manual of the RESTful API ... 53

4.10 Monitoring Framework – Client ... 53
4.10.1 Introduction ... 54
4.10.2 Prerequisites .. 54
4.10.3 Dependencies .. 55
4.10.4 Installation .. 56
4.10.5 Start monitoring .. 56
4.10.6 Configuring plug-ins and update intervals .. 56

4.11 Security Manager ... 57

4.12 Model-Based Testing (MBT) ... 61
4.12.1 Model Simulation .. 62
4.12.2 Performance Estimation .. 62
4.12.3 Test Execution for Functional Testing and Non-functional Testing ... 64

4.13 Application Manager .. 65
4.13.1 Prerequisites .. 66
4.13.2 Dependencies .. 66
4.13.3 Installation .. 66
4.13.4 Start/Stop the server .. 67
4.13.5 Configuration of USERS' accounts ... 67
4.13.6 Example of use .. 67
4.13.7 Reference manual of the RESTful API ... 68

4.14 Resource manager .. 68
4.14.1 Prerequisites .. 69
4.14.2 Dependencies .. 69
4.14.3 Installation .. 69
4.14.4 Start/Stop the server .. 69
4.14.5 Configuration of USERS' accounts ... 70
4.14.6 Reference manual of the RESTful API ... 70

4.15 Execution manager ... 71
4.15.1 Introduction ... 71
4.15.2 Prerequisites .. 72
4.15.3 Dependencies .. 72
4.15.4 Installation .. 72
4.15.5 Start/Stop the server .. 73
4.15.6 Configuration of USERS' accounts ... 73
4.15.7 Example of use .. 73
4.15.8 Reference manual of the RESTful API ... 74

4.16 Integrated Reference System User Scripts .. 74
4.16.1 System requirements ... 74
4.16.2 Dependencies .. 75

D5.5 – Final developers‟ documentation

Page vi Version 1.2 17 May 2019

Confidentiality: Public Distribution

4.16.3 Deployment Procedure .. 75
4.16.4 Usage Guide .. 75

5. Conclusion ... 78

6. References .. 79

A.1. Example Application .. 80

A.2. Programming Model functions & annotations - final documentation ... 84

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page vii

Confidentiality: Public Distribution

INDEX OF FIGURES

Figure 1: Example application data flow .. 10
Figure 2: Example application‟s components definition .. 11
Figure 3: Example application‟s communication objects definition ... 11
Figure 4: Example application‟s Platform Description ... 12
Figure 5: Component function definitions .. 12
Figure 6: Communication Object initializations ... 14
Figure 7: Example usage of Programming Interface .. 15
Figure 8 - Example of an execution of the start-PHANTOM.py script launching PT, MOM and DM 19
Figure 9: Code Analysis results for component C0 .. 20
Figure 10: MOM‟s results after second iteration .. 20
Figure 11: Component Network example ... 22
Figure 12: Platform Description Example .. 23
Figure 13: Requirement annotations in the Component Network ... 23
Figure 14: Example of the Repository file – folder structure ... 25
Figure 15. Screenshot of the Online Reference Manual of the PHANTOM Repository API ... 29
Figure 16: Monitoring Server ... 51
Figure 17. Screenshot of the Online Reference Manual of the PHANTOM Monitoring Server API 53
Figure 18: Monitoring Client .. 54
Figure 19. Screenshot of the Online Reference Manual of the Application Manager API ... 68
Figure 20. Screenshot of the Online Reference Manual of the Resource Manager API ... 71
Figure 21: Execution Manager ... 72
Figure 22. Screenshot of the Online Reference Manual of the Execution Manager API ... 74

D5.5 – Final developers‟ documentation

Page viii Version 1.2 17 May 2019

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This document provides the final documentation for the PHANTOM toolchain. It

includes guidelines that need to be followed when placing an application for deployment

in the PHANTOM framework, so as to facilitate the use of the PHANTOM tools. In

section 2, a basic deployment of the tools is described for a “Hello World” application to

facilitate the familiarity of the user with the toolflow using the Integrated Reference

System Virtual Machine. In section 3, the characteristics of the Programming Model that

can be adopted by the user are described, while the deployment guides for each

PHANTOM tool are presented in section 4, in terms of guidelines about the individual

deployment of each tool and the whole toolchain with details that will ensure their

installation and execution on any platform that satisfies the dependencies specified. The

deployment guides concern all the tools of the PHANTOM toolchain, namely Repository,

Parallelization Toolset, IP Core Generator, IP Core Marketplace, Multi-Objective Mapper

(Generic and Offline), Deployment Manager, PHANTOM FPGA Linux Infrastructure,

Monitoring Framework Server and Client, Security Manager, Model-Based Testing,

Application Manager, Resource Manager, Execution Manager, as well as the Integrated

Reference System user scripts. The usage capabilities that are provided by PHANTOM

are described in the following sections with specific guidelines. For details about each

individual tool‟s functionality see D1.4, D2.2, D3.2 and D4.4.

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 9

Confidentiality: Public Distribution

1. INTRODUCTION

The design details of the different PHANTOM technologies have been thoroughly

described in previous deliverables (see D1.4, D2.2, D3.2, D4.4). The deployment of the

tools has also been presented in the context of the Integrated Reference System in D5.2.

In this document, details are given concerning the individual deployment of the different

tools, as well as the initial set-up and deployment of a Hello World application using

PHANTOM.

2. GETTING STARTED

In this section, the deployment of a simple application exchanging data is described to

showcase the steps that should be followed to develop a PHANTOM application. These

steps include the following:

1. Defining the Application Model

2. Defining the System Model

3. Structuring the Application and System models in XML format

4. Creating application components (C,C++ code)

5. Using the Programming Interface and code annotations

6. Placing application files (source, input, description files) on the Repository

7. Initiating the PHANTOM tools

This tutorial is designed to work with the help of the Integrated Reference System Virtual

Machine (see D5.2 for details) which automates a lot of the work needed by the

developer. The same procedure can be followed for the case of individual deployment of

the tools which will also require the manual deployment of the tools as described in

section 4.

2.1 CREATING A PHANTOM APPLICATION

2.1.1 Defining the Application Model

The first thing a PHANTOM developer needs to do is define the different application

components that are going to comprise the whole application and the communication

objects that are going to be used.

For this tutorial, a simple application with 3 components is used. To showcase the

functionality offered by the PHANTOM Programming Interface, the components will be

exchanging data using the Shared and Queue protocols, while synchronizing using the

Signal protocol. In specific, the following transactions are observed in Figure 1.

D5.5 – Final developers‟ documentation

Page 10 Version 1.2 17 May 2019

Confidentiality: Public Distribution

Figure 1: Example application data flow

In the first part the application, arrays of integers are inserted in the queue that is used be-

tween all three components by components C0 and C2 and are collected by component

C1. Signals and the blocking attribute of the phantom_queue_get() function are used for

the coordination of the data transfers that guarantees the deterministic behavior of the ap-

plication.

In the second part, arrays of integers are also moved from component C0 to C2. Here, co-

ordination is guaranteed by the blocking queue.

In the third part, a shared array is used between components C1 and C2 and consistency is

guaranteed with the use of a signal.

The source code of the components defines the behavior of each component in separate,

but in order to define the application as a whole a high-level description is required by the

developer for the definition of the application‟s extrovert behavior. For our example, the

components are modeled as shown in Figure 2 using XML format.

<component name="C0" type="asynchronous">

 <source file="C0.cpp" lang="cpp" path="src"/>

 <devices CPU="yes" GPU="no" FPGA="no"/>

</component>

<component name="C1" type="asynchronous">

 <source file="C1.cpp" lang="cpp" path="src"/>

 <devices CPU="yes" GPU="no" FPGA="no"/>

</component>

<component name="C2" type="asynchronous">

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 11

Confidentiality: Public Distribution

 <source file="C2.cpp" lang="cpp" path="src"/>

 <devices CPU="yes" GPU="no" FPGA="no"/>

</component>

Figure 2: Example application’s components definition

In Figure 3 the definition of the corresponding communication objects are also shown.

<comm-object name="Queue0" object-class="FIFO" item-size="1" size="100"

type="Queue">

 <source name="C0" port-name="inQueue00" type="in"/>

 <target name="C1" port-name="outQueue01" type="out"/>

 <target name="C2" port-name="outQueue02" type="out"/>

</comm-object>

<comm-object name="Shared0" object-class="shared" item-size="4" size="10"

type="Shared">

 <source name="C2" port-name="inShared0" type="in"/>

 <target name="C1" port-name="outShared0" type="out"/>

</comm-object>

<comm-object name="Signal0" object-class="signal" type="Signal" item-size="1"

size="1">

 <source name="C0" port-name="inSignal0" type="in"/>

 <target name="C2" port-name="outSignal0" type="out"/>

</comm-object>

<comm-object name="Signal1" object-class="signal" type="Signal" item-size="1"

size="1">

 <source name="C1" port-name="inSignal1" type="in"/>

 <target name="C2" port-name="outSignal1" type="out"/>

</comm-object>

<comm-object name="Signal2" object-class="signal" type="Signal" item-size="1"

size="1">

 <source name="C2" port-name="inSignal2" type="in"/>

 <target name="C1" port-name="outSignal2" type="out"/>

</comm-object>

Figure 3: Example application’s communication objects definition

Both components and communication objects are defined in the Component Network

XML file which is thoroughly discussed in other deliverables (D1.2, D1.3, D1.4).

In the following sections, this example will be used to guide the reader through the differ-

ent steps.

2.1.2 Defining the System Model

Apart from the Application Model the System model is also defined by the user and

contains all necessary information about the hardware components that are available

(single-CPU nodes, SMPs, CPU-GPU systems, FPGAs). For our example the description

file (Platform Description XML file – also described in detail in D1.2, D1.3, D1.4) is

shown in .

<platform name="localhost" xsi:noNamespaceSchemaLocation="./hw_phantom.xsd">

 <device name="DevelopmentMachine" type="CPU-SMP" reliability="5">

 <processing-node name="unit1" type="CPU-SMP" architecture="SMP">

 <processor name="local" type="INTEL-COREi7">

 <configuration name="core number" value="4"/>

 <configuration name="cpu frequency" value="2.6" unit="GHz"/>

D5.5 – Final developers‟ documentation

Page 12 Version 1.2 17 May 2019

Confidentiality: Public Distribution

 <configuration name="bytespercycle" value="1"/>

 <memory name="MEM1" type="RAM" size="8192" size-unit="MB"

access-time="1" access-time-unit="ns/word"/>

 </processor>

 </processing-node>

 <comm_interface name="enp0s3" type="Ethernet Network">

 <configuration name="speed" value="100" units="MBit/s"

ip="localhost" user="demo"/>

 </comm_interface>

 </device>

</platform>

Figure 4: Example application’s Platform Description

2.1.3 Creating application components

Each application component is mapped to its own C/C++ source file which should

contain at least one function with the same name as the source file. Additionally, the

phantom library needs to be included in every component, so that the PHANTOM

framework functions and structures can be exploited. For our example application, the

definitions of the components are displayed in Figure 5.

// C0.cpp

#include “../phantom/phantom.h”

void C0() {

 …

}

// C1.cpp

#include “../phantom/phantom.h”

void C1() {

 …

}

// C2.cpp

#include “../phantom/phantom.h”

void C2() {

 …

}

Figure 5: Component function definitions

2.1.4 Using the Programming Interface and code annotations

In order to use the functionalities provided by the Programming Interface (also including

the Monitoring Interface), the corresponding initializations should be made. In specific,

every communication object should be declared using the corresponding high-level

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 13

Confidentiality: Public Distribution

annotations, while a unique pointer also needs to be initialized for the use of the

communication functions.

See Figure 6 for the example application‟s initializations.

// C0.cpp

#include “../phantom/phantom.h”

void C0() {

 phantom_monitor *monitor = phantom_monitor_init();

 . . .

 #pragma phantom queue inQueue00

 phantom_queue *C0_Queue0 = phantom_queue_init("inQueue00");

 #pragma phantom signal inSignal0

 phantom_signal *signal = phantom_signal_init("inSignal0");

 . . .

}

// C1.cpp

#include “../phantom/phantom.h”

void C1() {

 phantom_monitor *monitor = phantom_monitor_init();

 . . .

 #pragma phantom queue outQueue01

 phantom_queue *C1_Queue0 = phantom_queue_init("outQueue01");

 phantom_shared *shared_object = phantom_shared_init("outShared0");

 #pragma phantom signal inSignal1

 phantom_signal *signal1 = phantom_signal_init("inSignal1");

 #pragma phantom signal outSignal2

 phantom_signal *signal2 = phantom_signal_init("outSignal2");

 . . .

 #pragma phantom shared outShared0

 int *shared_data1 = (int *)malloc(sizeof(int *) * 10);

 . . .

}

// C2.cpp

#include “../phantom/phantom.h”

void C2() {

 phantom_monitor *monitor = phantom_monitor_init();

 . . .

D5.5 – Final developers‟ documentation

Page 14 Version 1.2 17 May 2019

Confidentiality: Public Distribution

 #pragma phantom queue outQueue02

 phantom_queue *C2_Queue0 = phantom_queue_init("outQueue02");

 phantom_shared *shared_object = phantom_shared_init("inShared0");

 #pragma phantom signal outSignal0

 phantom_signal *signal1 = phantom_signal_init("outSignal0");

 #pragma phantom signal outSignal1

 phantom_signal *signal2 = phantom_signal_init("outSignal1");

 #pragma phantom signal inSignal2

 phantom_signal *signal3 = phantom_signal_init("inSignal2");

 . . .

 #pragma phantom shared inShared0

 int *shared_data2 = (int *)malloc(sizeof(int *) * 10);

 . . .

}

Figure 6: Communication Object initializations

Finally, the functions provided by the Programming Interface can be used using the

pointer variables declared in the previous step, like shown in Figure 7.

// C0.cpp

#include “../phantom/phantom.h”

void C0() {

 . . .

 for(i=0; i<3; i++) {

 phantom_queue_put(C0_Queue0,a[i]);

 }

 phantom_wait(signal);

 . . .

 for(i=0; i<3; i++) {

 phantom_queue_put(C0_Queue0,d[i]);

 }

 . . .

 phantom_mf_end(monitor);

}

// C1.cpp

#include “../phantom/phantom.h”

void C1() {

 . . .

 for(i=0; i<6; i++) {

 a[i] = (uint8_t *)phantom_queue_get(C1_Queue0);

 . . .

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 15

Confidentiality: Public Distribution

 }

 phantom_notify(signal1);

 phantom_wait(signal2);

 phantom_synchronize(shared_object,shared_data1,0);

 . . .

 phantom_mf_end(monitor);

}

// C2.cpp

#include “../phantom/phantom.h”

void C2() {

 . . .

 phantom_queue_put(C2_Queue0,a);

 phantom_queue_put(C2_Queue0,b);

 phantom_queue_put(C2_Queue0,c);

 phantom_notify(signal1);

 phantom_wait(signal2);

 for(i=0; i<3; i++) {

 d[i] = (uint8_t *)phantom_queue_get(C2_Queue0);

 . . .

 }

 . . .

 phantom_synchronize(shared_object,shared_data2,1);

 phantom_notify(signal3);

 . . .

 phantom_mf_end(monitor);

}

Figure 7: Example usage of Programming Interface

The complete components‟ source code for this example can be found in A.1.

2.2 USING THE INTEGRATED REFERENCE SYSTEM VIRTUAL MACHINE

Next, the recommended steps will be presented for correctly using the Virtual Machine,

available at https://github.com/PHANTOM-Platform/Reference_VM:

1. Update of the PHANTOM tools – It is always recommended to run the script

„User-tools/management-scripts/update-tools.sh‟ to be sure that you are using

the latest version of the PHANTOM tools. Please have in mind that if the update

updates the „update-tools.sh‟ script, then the „update-tools.sh‟ script must be

executed again in order apply the changes. To execute the update script run:

It is worth to notice that this script starts the local servers upon exit.

demo@ubuntu:~/phantom-tools/User-tools/management-scripts$ bash update-tools.sh

D5.5 – Final developers‟ documentation

Page 16 Version 1.2 17 May 2019

Confidentiality: Public Distribution

2. Start local servers (optional) - If the USER wants to use local instance of the

servers and did not run the update script, then the servers must be started

manually by running the command:

This is what we consider for this example.

3. Copy of USER application to VM - The next step consists in the deployment

of the USER application files to be analysed inside the Virtual Machine at a

location of the USER choice: $CODE_DIR.

For this example, let‟s consider that we place the example‟s files in the

directory:

/home/demo/examples/tutorial

Which should now have the following structure:

turorial/

 Makefile

 cla.in

 src/

 C0.cpp

 C1.cpp

 C2.cpp

 example_lib.h

 phantom_user_defined_structs.h

 description/

 cpn.xml

 hw.xml

Here we can spot a bunch of additional files which can be found at the

corresponding location of the VM:

 Makefile – this is the Makefile of the application.

 cla.in – in this file the user can include input arguments for the

application components as described in section 3.7. This is empty for our

example since the components don‟t expect any input arguments.

 example_lib.h – an included external library used by the components.

 phantom_user_defined_structs.h – in this file the user needs to include

any library that defines any structs that are used for shared objects. This

is empty for our example since we don‟t use any user defined structures.

demo@ubuntu:~/phantom-tools/User-tools/management-scripts$ bash start-servers.sh

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 17

Confidentiality: Public Distribution

4. Configuration of ‘settings.py’ – The file „settings.py‟ must be configured to

according to the characteristics of the application and the intentions of the

USER. The „settings.py‟ is divide in 3 main zones:

i. Repositories configurations – used for the USER specify the

location of the repositories to be used (localhost or remote

location) and credentials. For our example:

Set the Repository IP address and port

repository_ip = "localhost"

repository_port = 8000

app_manager_ip = "localhost"

app_manager_port = 8500

exe_manager_ip = "localhost"

exe_manager_port = 8700

monitoring_ip = "localhost"

monitoring_port = 3033

resource_ip = "localhost"

resource_port = 8600

Authentication credentials

user =

password =

ii. Application configurations – Used for the USER to indentify

application specific properties:

Name of the application to be used server and by PHANTOM tools to

identify the application:

app_name = "tutorial"

Path for the root of the application‟s folder (to upload Makefile and cla.in)

root_path = "/home/demo/examples/tutorial"

Path for the folder with the source code

src_path = "/home/demo/examples/tutorial/src"

Path for the folder with description files (Component Network and

Platform Description)

desc_path = "/home/demoexamples/tutorial/description"

Path for the folder with PHANTOM API files

phantom_path = "/home/demo//phantom-tools/PHANTOM_FILES"

Link to the where the marketplace is hosted and name of the folder where

IPCores should be stored locally

ipMarket_path = "https://github.com/PHANTOM-Platform/PHANTOM-

IP-Core-Marketplace.git"

D5.5 – Final developers‟ documentation

Page 18 Version 1.2 17 May 2019

Confidentiality: Public Distribution

ip_folder = "IPCore-MarketPlace"

Path for folder with application inputs

inputs_path = ""

Name of the component network file to be used

CompNetName = "cpn.xml"

Name of the platform description file to be used

PlatDesName = "hw.xml"

iii. Tools Configurations – This section contains the parameters for

configuring the PHANTOM tools. In includes the path for each

tool deployed on the machine. E.g.:

MOM location

MOM_path = "/home/demo/phantom-tools/GenericMOM"

And tool specific arguments. E.g.:

PT_mode = "on" #operation mode: on | off - "on" to run PT normally,

"off" to skip code analysis process

In this section can also be found the property for the address of

the FPGA VM, as well as the SSH port to be used

FPGAVM_ip = “”

FPGAVM_port =

5. Run the start script – The last step consists in the execution of script that will:

upload all the needed files to the specified repositories; register the application

on the Application manager; and configure and launch each tool. To start this

script run:

demo@ubuntu:~/phantom-tools/User-tools$./start-PHANTOM.py

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 19

Confidentiality: Public Distribution

This command as several options as shown the when using the „-h‟ flag:

During the execution of the application, the terminal windows are launched with the

output of each tool. This way the USER can get a better understanding of what is

happening and get feedback about any issue that may have occur with the execution of a

tool. An example of an execution is shown in Figure 8, where the „./startPHANTOM‟

script launched new terminals for the Parallelization Toolset (PT), Multi-Objective

Mapper (MOM) and Deployment Manager (DM).

Figure 8 - Example of an execution of the start-PHANTOM.py script launching PT, MOM and
DM

At the PT‟s terminal, output similar to the one appearing in Figure 9 demonstrates to the

user the results of PT‟s Code Analysis pointing out the parallel regions that are identified

and the dependencies for the non-parallel ones.

demo@ubuntu:~/Desktop/phantom-tools/User-tools$./start-PHANTOM.py -h
usage: start-PHANTOM.py [-h] [-u] [-d] [-i] [-c] [-m] [-p]

Tool to support the execution of an application on PHANTOM Framework

optional arguments:
 -h, --help show this help message and exit
 -u, --noUpload Do not (re)upload the application to the repository.
 (Application should be already in repository)
 -d, --onlyDesc Only re-uploads the description files to the repository)
 -i, --skipInputs Do not (re)upload the application inputs to the
 repository. (Inputs should be already in repository)
 -c, --clean Clean all the data in repositories and temporary cache
 on PHANTOM tools. Automatically update PHANTOM_FILES
 (-p)
 -m, --ipmarket Uploads the IP Core Market place to the repository
 -p, --phantomfiles Uploads the PHANTOM files (PHANTOM API and Monitoring
 API)

D5.5 – Final developers‟ documentation

Page 20 Version 1.2 17 May 2019

Confidentiality: Public Distribution

Figure 9: Code Analysis results for component C0

At the MOM‟s terminal, the proposed mappings are displayed, as well as the metrics from

the application‟s execution using them, as shown in Figure 10.

Figure 10: MOM’s results after second iteration

The deployment procedure can also be monitored at the DM‟s terminal, while the output and

error streams from the application‟s execution are stored in the corresponding files residing

at the same directory as the tool‟s executable (for the VM this is: /home/demo/phantom-

tools/DeploymentManager).

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 21

Confidentiality: Public Distribution

3. PROGRAMMING MODEL

In this section, guidelines that need to be followed when placing an application for

deployment in the PHANTOM framework are described to facilitate the use of the

PHANTOM tools/servers.

Generic guidelines about the Programming Model have been described in previous

deliverables. In this section, specific rules about the definition of the application

components in the code are presented, as well as for the use of the PHANTOM

Programming Interface and Monitoring Library.

3.1 APPLICATION MODEL

3.1.1 Components

A PHANTOM application is split into different software components that execute in par-

allel and are launched by the platform at the beginning of the execution. Each component

corresponds to a specific source file as defined in the component network, which should

have an entry point for the component‟s execution. Components can be reused multiple

times as long as this is explicitly defined in the Component Network. They are initiated as

separate and independent functions. These functions exist in the component‟s dedicated

source file with the corresponding name. The developer is able to choose to pass com-

mand line arguments to the function. Finally, the return type of the functions should be

void*. So, the function‟s signature for a component with a source file comp_example.cpp

should be like this:

void *comp_example(int32_t argc, char **argv)

or

void *comp_example()

Developers are free to include any external libraries they wish to use, as no compatibility

issues were identified during development. On the other hand, in order for the

components to use the PHANTOM libraries, the „phantom.h‟ header file should be

included, so that the necessary structures and functions are visible from the component

main function.

3.1.2 Communication Objects

Components are defined as independent computational entities that don‟t interact directly.

For this reason, an interface is provided by PHANTOM for the components to use to

access data and coordinate with other components.

Four types of Communication Objects have been developed, Shared, Queue, Signal,

Mutex (described in D1.2 and D1.4), which are implemented by the corresponding

interfaces as described D3.2 (Programming Interface).

The protocols have been furtherly enhanced to use specific data types for each

communication object, defined by the PHANTOM Programming Interface. In specific,

the following types are provided:

D5.5 – Final developers‟ documentation

Page 22 Version 1.2 17 May 2019

Confidentiality: Public Distribution

 phantom_shared

 phantom_queue

 phantom_signal

 phantom_mutex

3.2 DESCRIPTION MODELS

As described in previous documents, the architecture of the application created by the

user is strictly defined in the Component Network XML file. A PHANTOM application is

defined by two different entities, software components and communication objects, as

shown in Figure 11.

<application-

name="Example_Application"xsi:noNamespaceSchemaLocation="./phantom.xsd">>
<component name="A" type="asynchronous">
 <implementation id="1" model="any" target-HW="CPU">

 <source lang="c" file="CB.h" path="src\components"/>

 </implementation>
</component>
<component name="B" type="asynchronous" >
 <implementation id="1" model="any" target-HW="CPU">

 <source lang="c" file="CB.h" path="src\components"/>

 </implementation>
</component>
<comm-object name ="B" type="Buffer" object-class="FIFO" size="128" item-

size="8">
 <source name="A" port-name="inA1" type="in"/>
 <target name="B" port-name="outB1" type="out"/>
</comm-object>
<comm-object name ="S" type="Signal" object-class="Control">
 <source name="A" port-name="inA2" type="in"/>
 <target name="B" port-name="outB2" type="out"/>

</comm-object>
<comm-object name ="Sh" type="Shared Memory" object-class="Memory" size="1024"

item-size="32">
 <source name="A" port-name="inA3" type="in"/>
 <target name="B" port-name="outB3" type="out"/>

</comm-object>
</application>

Figure 11: Component Network example

The Platform Description XML file is used to define the system architecture including all

characteristics that are useful for the deployment.

The final design of these files is shown in Figure 12 depicting a CPU-FPGA platform

description:

<platform>
<device name="CPU-FPGA device" type="CPU-FPGA" reliability="2">

 <processing-node name="UIZynq-unit1" type="CPU-SMP" architecture="SMP">

 <processor name="UIZynq-P1" type="ARM-Cortex">

 <configuration name="core number" value="2"/>

 <configuration name="cpu frequency" value="800"

unit="MHz"/>

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 23

Confidentiality: Public Distribution

 <configuration name="bytespercycle" value="1"/>

 <memory name="UIZynq-SM3" type="DDR3" size="1024" size-

unit="MB" access-time="8" access-time-unit="ns/word"/>

 </processor>

 </processing-node>

 <processing-node name="UIZynq-unit2" type="FPGA" brand="Xilinx">

 <fpgalogic name="UIZynq-PL1" type="xc7z045ffg900-2">

 <resource name="UIZynq-LC" type="logiccell"/>

 <resource name="UIZynq-LUT" type="lookuptables"/>

 <resource name="UIZynq-LUTRAM" type="lookuptablesRAM"/>

 <resource name="UIZynq-FF" type="flipflop"/>

 <resource name="UIZynq-BRAM" type="blockRAM"/>

 <resource name="UIZynq-DSP"

type="digitalsignalprocessing"/>

 <resource name="UIZynq-BUFG" type="bufferglobal"/>

 <configuration name="UIZynq-maxfrequency" value="200"

units="MHz"/>

 <memory name="UIZynq-SM1" type="DDR3" size="1024" size-

unit="MB" access-time="8" access-time-unit="ns/word"/>

 </fpgalogic>

 </processing-node>

 <local_bus name="UIZynq-AXI" type="AXI4" throughput="15" throughput-time-

unit="Bytes/ns"/> <!--15GB/s-->

 <comm_interface name="UIZynq-EXT" type="Ethernet Network">

 <configuration name="UIZynq-speed" value="100" units="MBit/s"

ip="192.168.1.2" user="external"/>

 </comm_interface>

</device>

</platform>

Figure 12: Platform Description Example

Performance, power and security requirements can also be introduced by the user in the

Component Network as shown in Figure 13.

<requirements name="global_requirements" set-by="USER"

target="UC_Surveillance">

 <non-functional max-value="1000" measurement-unit="ns" name="global_WCET"

type="execution-time"/>

 <non-functional max-value="350" measurement-unit="milliwatt"

name="global_WCPC" type="power-consumption"/>

 <non-functional type="security" target-component="Simons"/>

</requirements>

Figure 13: Requirement annotations in the Component Network

3.3 PROGRAMMING INTERFACE – MONITORING LIBRARY

The user can obtain a pointer to the communication object structure through an initializa-

tion method, so that they can call the rest of the API methods using this pointer. The ini-

tialization functions are shown below:

phantom_shared *phantom_shared_init(char *comm_object_port)

phantom_queue *phantom_queue_init(char *comm_object_port)
phantom_signal *phantom_signal_init(char *comm_object_port)

D5.5 – Final developers‟ documentation

Page 24 Version 1.2 17 May 2019

Confidentiality: Public Distribution

phantom_mutex *phantom_mutex_init(char *comm_object_port)

where comm_object_port is the name of the port of the object as defined in the Compo-

nent Network. The port name is strictly related to the source file and not to the component

entity, so components that are linked to the same source file should use the same port

name in the component network for the corresponding objects.

An important note here is that any communication object initializations should occur al-

ways locally inside the component‟s function. On the other hand, the object‟s pointer can

be passed in any function the user requires to call the protocol functions (phan-

tom_queue_get, phantom_synchronize etc.).

The user needs to also declare the corresponding communication object variables in order

to use the protocol functions, which are cited in A.2.

Additionally, a middleware interface is provided for the user to exploit the Monitoring

Library:

The phantom_monitor type is defined to give access to the monitoring functionalities

provided by PHANTOM.

phantom_monitor *phantom_monitor_init()

Returns a pointer to the monitor that is used to send metrics to the Monitoring

Framework.

Same as with the communication object initializations, monitoring initializations should

occur always locally inside the component‟s function, while the monitor‟s pointer can be

passed in any function the user requires to call the monitoring functions, which are cited

in A.2.

3.4 DATA TRANSFERS

The Queue Protocol has been developed to support object transfers of variable length. For

that purpose, the objects are passed to the queue functions serialized including the size of

the object in the 4 first bytes. Although the developers are free to develop their own

functions for serialization, some prototype ones have been developed and are provided for

the facilitation of the process. These are cited in A.2.

Concerning the Shared Protocol, the developer is able to transfer objects of user defined

structures of static size. In order to enable such transactions, the user should include the

libraries that define such structures in a dedicated header file for this purpose. This file is

named „phantom_user_defined_structs.h’ and it should be placed in the src directory.

3.5 FILE OPERATIONS

The PHANTOM Programming Model is armed with file operations (as described in

D1.3). The added functions are mirrors of the POSIX file operations in order to maximise

compatibility. The stream objects returned by the functions are compatible with the other

I/O functions from the C standard library, fprintf, fscanf, snprintf, sprintf, sscanf. The

functions are documented in detail in A.2.

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 25

Confidentiality: Public Distribution

3.6 OPTIMIZATION ANNOTATIONS

The Programming Model includes assisting annotations for the static analysis of the code

to enhance the parallelization results of the Parallelization Toolset (see D1.3). These

provide additional information that is too complex to be extracted automatically and

therefore can be used by developers to improve deployment of their code, without

enforcing guidelines on all component developers. They are also cited in A.2.

3.7 PLACING DEVELOPER’S APPLICATION IN THE PHANTOM REPOSITORY

The PHANTOM Repository is used by the all the different tools of the framework. For

this purpose the tools assume a specific structure in the Repository that the developer

should respect when uploading any source, input or description files.

As it is explained in the relevant documents (e.g. D1.4), the structure that the Repository

follows contains a set of level-one folders which are considered the project directories. In

the second level there is a set of directories defining the source (owner).

Figure 14: Example of the Repository file – folder structure

D5.5 – Final developers‟ documentation

Page 26 Version 1.2 17 May 2019

Confidentiality: Public Distribution

The developer must upload all the necessary files on the Repository at

<ProjectName>/development before the initiation of the tools. In specific, the following

structure should be followed:

<ProjectName>/

development/

 src/

 phantom_user_defined_structs.h

 description/

 Component-Network.xml

 Platform-Description.xml

 inputs/

 outputs/

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 27

Confidentiality: Public Distribution

4. DEPLOYMENT GUIDES

In this section, guidelines about the individual deployment of each tool are provided with

details that will ensure their installation and execution on any platform that satisfied the

dependencies specified.

4.1 REPOSITORY

This section describes the deployment of the PHANTOM Repository and provides a us-

age guide. Please, keep in mind that these instructions may evolve fruit to extensions and

improvements of the repository resulting from future work. Such updates will be available

at [1]. Additionally, there are some video tutorials available at the PHANTOM YouTube

channel [2].

The PHANTOM Repository is composed of two components: a web server and a data

storage system. The web server provides various functionalities for data query and data

analysis via RESTful APIs with documents in JSON format. The server's URL is

"http://localhost:8000" by default. The default port for the https service is 8010.

4.1.1 Prerequisites

The server is implemented using Node.js, and connects to ElasticSearch to store and

access Metadata. Before installing the required components, note that the installation

and setup steps mentioned below assume a current Linux for an operating system. The

installation was tested with Ubuntu 16.04 and 17.04 LTS. Before proceeding, cloning

the repository is required:

 git clone https://github.com/PHANTOM-Platform/Repository.git;

4.1.2 Dependencies

This project has the following dependencies:

Component Homepage Version

Elasticsearch https://www.elastic.co/products/elasticsearch = 2.4.6

Node.js https://apr.apache.org/ >= 4.5

npm https://www.npmjs.com/ >= 1.3.6

4.1.3 Installation

Before the installation of the Repository, it is required that npm be installed in ad-

vance. Once it is successfully installed, the Repository and the other required packag-

es are automatically installed running one of the following scripts. The user can

choose the appropriate shell scripts depending on their Operating System:

Shell script for Intel-x86 64bits (tested on Ubuntu):

bash setup-server-x86-64.sh;

Shell script for Intel-x86 32bits (tested on Ubuntu):

http://localhost:8000/
https://www.elastic.co/products/elasticsearch
https://apr.apache.org/
https://www.npmjs.com/

D5.5 – Final developers‟ documentation

Page 28 Version 1.2 17 May 2019

Confidentiality: Public Distribution

bash setup-server-x86-32.sh;

or the Shell script for Armv7l 64bits (tested on Raspbian):

bash setup-server-armv7-64.sh;

Notice that the script installs Nodejs 9.4.0. and Elastic-Search 2.4.6 on the folder {us-

er_local_home_folder}/phantom_server. Details about the setup of ElasticSearch-

database server can be found at [3][4][5][6].

The listening port is defined in the file repo_app.js, which default number is 8000, if

the user wishes to use a different port, they can just modify it before starting or re-

starting the Repository.

4.1.4 Start/Stop the server

Starting the PHANTOM Repository by executing the next script. For security rea-

sons, the services may not start if they are requested from root.

 bash start-repo.sh;

The server can be stop with the script:

 bash stop-repo.sh;

In case of issues it can be verified that the Repository is running and has access to the

database with the next scripts.

Test of the Nodejs Front-end running service:

 curl http://localhost:8000;

Test if the Front-end has access to the ElasticSearch database Server.

 curl -s http://localhost:8000/verify_es_connection;

To access to the Web-Interface, access with your internet browser to

http://localhost:8000/repository.html

4.1.5 Configuration of USERS' accounts

After the installation, and before users can use the Repository, it is needed to register

the users. This can be done using the script setup-new-server.sh provides an automatic

method for register multiple users from the file list_of_users.ini.

bash setup-new-server.sh;

NOTICE: For security reasons, users' accounts can be ONLY registered on the server.

Requests from different IPs will be rejected.

http://localhost:8000/verify_es_connection
http://localhost:8000/repository.html

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 29

Confidentiality: Public Distribution

For further details and examples are available in the folders api_command_line,

api_bash_scripts, and api_java.

4.1.6 Reference manual of the RESTful API

The Reference manual of PHANTOM Repository RESTful API contains description of each

of the implemented methods, with examples of use, and type of possible responses. The

manual is built with the tool APIDOC, and formatted in a friendly HTML, where users can

find a classification of the methods and a searching box. The manual is available online at

https://phantom-platform.github.io/Repository/ (see next figure)

Figure 15. Screenshot of the Online Reference Manual of the PHANTOM Repository API

4.2 PARALLELISATION TOOLSET (PT)

4.2.1 System requirements

A Linux distribution

A Linux distribution is required in order to support the installation of the ROSE com-

piler which is used by the tool. During development a Red Hat Enterprise Linux dis-

tribution has been used, as well as Ubuntu 16.04 LTS and Ubuntu 18.04 LTS, while

other distributions can also be used as long as the ROSE Compiler can be successfully

installed on the machine.

https://github.com/PHANTOM-Platform/Repository/tree/master/api_command_line
https://github.com/PHANTOM-Platform/Repository/tree/master/api_bash_scripts
https://github.com/PHANTOM-Platform/Repository/tree/master/api_java
https://phantom-platform.github.io/Repository/

D5.5 – Final developers‟ documentation

Page 30 Version 1.2 17 May 2019

Confidentiality: Public Distribution

No more hardware requirements are specified.

4.2.2 Dependencies

Java 8

The jar executable file has been compiled using Java version 8, so a compatible

version should be used for execution.

ROSE Compiler

A detailed guide for the installation of the ROSE Compiler and the autoPar tool that

is used is provided in the following address:

http://rosecompiler.org/ROSE_HTML_Reference/installation.html

After the installation of ROSE, an executable of the autoPar tool will be available

which should be able to be called by the PT internally. The PATH environmental

variable should include the path to the autoPar executable, and LD_LIBRARY_PATH

should include the path to the ROSE libraries.

4.2.3 Lite vs Full version

The simplified version of the Parallelization Toolset supports all the basic functionalities

that are expected, namely:

 The support of the PHANTOM Programming Model.

 The interaction with all PHANTOM components such as the Repository, the Ap-

plication and Execution Managers, the MOM, and the Deployment Manager.

 The support of library selection according to the selected Deployment Plan.

The features that are only supported by the full version are the following:

 Automatic generation of parallelized components

4.2.4 Deployment Procedure

An executable jar is needed for the execution of the component. The lite version can

be directly downloaded from the following online repository:

https://github.com/PHANTOM-Platform/Parallelisation-Toolset

4.2.5 Configuration Guide

Along with the executable file, a configuration file (“config.properties”) is available

for the user to change the following fields:

 usermail: The username that is used to access the Repository.

 project: The name of the project.

 ipAddressRepo: Repository IP address

http://rosecompiler.org/ROSE_HTML_Reference/installation.html
https://github.com/PHANTOM-Platform/Parallelisation-Toolset

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 31

Confidentiality: Public Distribution

 portRepo: Repository port

 ipAddressApp: Application Manager IP address

 portApp: Application Manager port

 ipAddressExe: Execution Manager IP address

 portExe: Execution Manager port

 ipAddressMon: Monitoring Server IP address

 portMon: Monitoring Server port

 token: A valid token that can enable the use of the Repository for the requested

project

 mode: < on | off > Enables/Disables parallelization. When off, the original

versions of the components are adopted as the parallelized versions. An option

to avoid the analysis time overhead that is caused.

4.2.6 Usage Guide

 Execution steps

(run at terminal)

a. cd path/to/jarfile/

b. java –jar ParallelizationToolset.jar

 Results
The results of the PT are updated versions of the source files and the component

network. They are uploaded on the Repository.

4.2.7 Coordination with other components

The integration between the PHANTOM components is being coordinated by the

Application Manager and the Repository servers. Thus, any integration aspects refer

to the communication of the components via the use of the functionalities provided

by these servers.

Code Analysis

In specific, the MOM expects the Code Analysis part of the PT to be completed

before it continues with its execution. So, the PT is responsible to inform the

Application Manager about the end of its execution so that the MOM can be

initiated.

Technique Selection

Similar, to the MOM, Technique Selection listens to the Execution Manager for

requested executions from the MOM (or the MBT or the user) in order to continue

D5.5 – Final developers‟ documentation

Page 32 Version 1.2 17 May 2019

Confidentiality: Public Distribution

with its functionality. When the module‟s execution is completed, a notification is

sent to the Application Manager, so that the Deployment Manager can be initiated.

Repository

During execution, there are a lot of interactions with the Repository, for

downloading and uploading files.

4.3 IP CORE GENERATOR

4.3.1 System requirements

The IP Core Generator requires a PC running Linux. It was tested on Ubuntu 16.04

LTS and Ubuntu 18.04 LTS, with AMD64 architecture, but should also run on any

other Linux distribution as long as the dependencies are met.

4.3.2 Dependencies

 Xilinx Vivado tools with Zynq-7000 support (Tested with Vivado Design

Suite 2016.4 and Vivado Design Suite 2017.4)

 Git

 Python3

 Python3 module: websocket-client

4.3.3 Deployment Procedure

The IP Core Generator needs Xilinx Vivado tools, with Zynq-7000 support, to be

installed and properly configured. Vivado Design Suite comes with all the necessary

tools and can be downloaded from:

https://www.xilinx.com/support/download.html

Installation and Licensing information can be found here:

https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0013-

vivado-installation-and-licensing-hub.html

The Vivado Design Suite User Guide can be used as reference for detailed install

instruction:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug97

3-vivado-release-notes-install-license.pdf

After installing Vivado Design Suite the tools must be imported into the current

environment. It is necessary to source settings32.sh or settings64.sh (whichever is

appropriate for the operating system) from the area in which the design tools are

installed. This sets up the environment to point to this installed location. For example,

for Vivado 2017.4, on the default install location:

https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0013-vivado-installation-and-licensing-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0013-vivado-installation-and-licensing-hub.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug973-vivado-release-notes-install-license.pdf

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 33

Confidentiality: Public Distribution

source /opt/Xilinx/Vivado/2017.4/settings64.sh

Git and Python3 come pre-installed in most operating systems. If any of them is

missing they can be installed with the following command:

sudo apt install git python3 python3-pip

Then the needed python modules can be installed using pip:

python3 -m pip install websocket-client

All the tool files can be downloaded to the current directory using git clone:

git clone https://github.com/PHANTOM-Platform/PHANTOM-IP-Core-Generator

git clone https://github.com/PHANTOM-Platform/IP-Core-Generator

Once everything has been installed, the tool can verify if the Xilinx tools are

properly configured and accessible with:

 ./ipcore-generator.sh verify

4.3.4 Configuration Guide

The IP Core Generator will need to know how to connect to the Repository and App

Manager. For this the corresponding IP addresses and ports should be set in the file

settings.py. Also, the user must input their credentials to allow the IP Core Generator

to connect to the other PHANTOM modules.

Set the Repository IP address and port

repository_ip = "localhost"

repository_port = 8000

Set the Application Manager websocket IP address and port

app_manager_ip = "localhost"

app_manager_port = 8500

Set the credentials for the Repository and Application Manager

repository_user = "username"

repository_pass = "password"

https://github.com/PHANTOM-Platform/PHANTOM-IP-Core-Generator
https://github.com/PHANTOM-Platform/IP-Core-Generator

D5.5 – Final developers‟ documentation

Page 34 Version 1.2 17 May 2019

Confidentiality: Public Distribution

Besides, IP addresses, ports and credentials, the only extra parameter that should be

configured is the model of the target FPGA device, so the IP Core generator can target

the correct hardware.

Set the target FPGA device - ZC706 = xc7z045ffg900-2

target_fpga = "xc7z045ffg900-2"

4.3.5 Usage Guide

The IP Core Generator works autonomously, reading newly added files when it

receives a notification from the Application Manager. To receive notifications from

the Application Manager it is necessary to subscribe to a project.

./ipcore-generator.py subscribe project-name

The tool will then automatically run when new deployments are checked by the

Offline MOM. If there is any component mapped to a FPGA the IP Core Generator

will fetch the respective source files from the Repository to proceed with the analysis

and source code transformation. It then calls Xilinx tools to generate an IP core,

compresses it into a zip file and uploads it to the Repository.

The tool will also create a modified version of the software component that includes all

the necessary code to interface between FPGA hardware and software automatically.

The modified component will also be uploaded to the Repository.

Finally, the IP Core Generator will modify the component network to include the new

FPGA implementation and update it in the Repository.

4.3.6 Manual usage

If you do not want to subscribe using the Application Manager, you can trigger the

IP Core Generator to manually on a project using the remote command:

./ipcore-generator.py remote project-name

Finally, to avoid all dependencies on the Application Manager and Repository, you

can simply run on a local PHANTOM project folder with the local command:

./ipcore-generator.py local /path/to/project/folder/

The outputs of the IP Core Generator (IP Core zip and modified component source

code) will be stored in the ipcore-generator directory inside the project folder.

4.4 IP CORE MARKETPLACE

The IP Core Marketplace is an online repository where PHANTOM compliant IP Cores

are stored. Users can check the IP Cores available and include or place existing

functions by them.

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 35

Confidentiality: Public Distribution

4.4.1 Dependencies

For the IP Core Marketplace to be able to be used, it must be deployed first deployed on

the Repository.

The recommended way to do it is by using the User-Scripts to download the IP Core

Market and upload it to a predefined location on the repository. If the user wants to use

this tool, then it have a dependency on User-Scripts.

Other way,the User only needs to use a way to send HTTP POST requests, like curl.

4.4.2 Installation Guide

The installation of the IP Core Marketplace with the User-Scripts can be done with a

simple configuration on the „settings.py‟, where the user needs to define the URL of

were the git repository is hosted:

ipMarket_path = https://github.com/PHANTOM-Platform/PHANTOM-

IP-Core-Marketplace.git

And the path where the IP Cores will be used store locally:

ip_folder = "IPCore-MarketPlace"

To perform deployment, the User needs to run:

4.4.3 Usage Guide

To deploy an IP Core from the PHANTOM IP Core Marketplace, the developer must

create a new implementation, in the Component Network, for the component which it is

desired to incorporate the IP core. This component implementation will be specific to

run on a Zynq, just like there are other component implementations specific for CPU or

for GPU.

The component network implementation must be modified to include the path of IP core

files and the FPGA software adapter source and header files, that are also provided by

the Marketplace.

The developer should edit the component code and include the FPGA software adapter

header file. Furthermore, the developer needs to replace the software function call with

the function provided in the FPGA software adapter. The provided function will take

care of interfacing with the FPGA hardware, copying the corresponding memory from

the CPU memory region to the FPGA memory region, initializing the IP core, running it

and copying back the results to the CPU memory.

demo@ubuntu:~/phantom-tools/User-tools$./start-PHANTOM.py -m

https://github.com/PHANTOM-Platform/PHANTOM-IP-Core-Marketplace.git
https://github.com/PHANTOM-Platform/PHANTOM-IP-Core-Marketplace.git
mailto:demo@ubuntu:~/phantom-tools/User-tools$./start-PHANTOM.py

D5.5 – Final developers‟ documentation

Page 36 Version 1.2 17 May 2019

Confidentiality: Public Distribution

This is all abstracted and the only effort needed from the developer, is adding a new

implementation to the Component Network, including the provided header file and

replacing the respective function calls on the component code.

4.5 MULTI OBJECTIVE MAPPER (MOM)

4.5.1 System requirements

No specific operating system is required and nor any hardware requirements are

specified.

4.5.2 Dependencies

The jar executable file has been compiled using Java version 8, so a compatible

version should be used for execution.

4.5.3 Lite vs Full version

The simplified version of the Multi-Objective Mapper supports all the basic functionalities

that are expected, namely:

 The generation of deployment plans of parallel applications on the CPU-based

hardware platforms.

 The support of the PHANTOM Programming Model.

 The interaction with all PHANTOM components such as the Repository, the PT,

and the Monitoring framework.

 The support of requirements such as execution time, energy consumption,

memory utilization and reliability.

The features that are only supported by the full version are the following:

 Mapping of components in GPUs and FPGAs.

 Multiple MOM iterations to provide improved performance deployment plans.

 Multiple MOM mutations to support extended design space exploration from the

generated deployment plans.

4.5.4 Deployment Procedure

An executable jar is needed for the execution of the component. An executable jar is

needed for the execution of the component. The lite version can be directly

downloaded from the following online repository:

https://github.com/PHANTOM-Platform/GenericMOM

4.5.5 Configuration Guide

Along with the executable file, a configuration file (“configuration.xml”) is available

for the user to change the following fields:

o configuration name="GenericMOM"

o login value="LOGIN"

o password value="MYPASSWORD"

o ipAddress value="IPADDRESS"

o targetPort target="Repository" value="PORTNUMBER1"

https://github.com/PHANTOM-Platform/GenericMOM

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 37

Confidentiality: Public Distribution

o targetPort target="ApplicationManager" value=" PORTNUMBER2"

o targetPort target="ExecutionManager" value=" PORTNUMBER3"

o subscription type="project" value="MYPROJECT1"

o filepath value = "description"

o source value = "PT"

o target value = "MOM"

o componentNetworkFileName value = "cpn.xml"

o hardwarePlatformFileName value = "hw.xml"

o mfserveraddress value = " IPADDRESS "

o mfserverport value = " PORTNUMBER4"

4.5.6 Usage Guide

Execution steps

Run at terminal:

a. cd path/to/jarfile/

b. java –jar MOM.jar -app “MOM_jar_file” -hw “component_network_XML file”

-NMAP 10 -iMAP init_deployment.xml --online

Arguments:

-jar “MOM_jar_file”: indicating the name of MOM‟s executable jar file. Mandatory

argument.

-app “component_network_XML file”: indicating the name of the component net-

work XML file. Mandatory argument when MOM does not access the remote re-

pository.

-hw “hardware_platform_XML file”: indicating the name of the hardware platform

XML file. Mandatory argument when MOM does not access the remote repository.

-NMAP “number”: indicating the number of the generated deployment plan popula-

tion per MOM‟s genetic algorithm‟s iteration. Optional argument.

-iMAP “deployment_plan_XML file”: indicating the name of the initial deployment

plan XML file. Optional argument.

--manualData: flag which indicates MOM to use metrics provided by the user and

not by the Monitoring Server or the MBT. Optional argument.

--online: flag which indicates MOM to access the remote repository as it is config-

ured in the configuration file (see Prerequisite files below). Optional argument.

-project “project_name”: indicating the specific target project name, overriding the

projects subscribed in the configuration file. Optional argument.

Results

The generated mappings are uploaded to the Repository for the Deployment Manager

to use them.

4.5.7 Coordination with other components

The integration between the PHANTOM components is being coordinated by the

Application Manager, Execution Manager and the Repository servers. Thus, any

D5.5 – Final developers‟ documentation

Page 38 Version 1.2 17 May 2019

Confidentiality: Public Distribution

integration aspects refer to the communication of the components via the use of the

functionalities provided by these servers.

Parallelization Toolset

In specific, the MOM expects the Code Analysis part of the PT to be completed before

it continues with its execution. So, the PT is responsible to inform the Application

Manager about the end of its execution so that MOM can be initiated. Similarly, the

Technique Selection expects a notification from the MOM (through the Application

Manager) in order to continue with its execution.

Repository

During execution, there are a lot of interactions with the Repository, for downloading

and uploading files.

4.6 OFFLINE MULTI OBJECTIVE MAPPER (OFFLINE MOM)

 System requirements

The OfflineMOM has no specific hardware requirements. It is tested to work on

standard Linux distributions, but should also work on Windows and MacOS.

 Dependencies

 Python 3

o The OfflineMOM is written in Python 3.

 Eclipse Epsilon

o Translation, model checking, and model pattern matching, is

implemented using the Epsilon framework, which is part of the Eclipse

project.

 MAST

o The timing analysis is performed using the MAST tools from the

University of Cantabria.

 Deployment Procedure

Python 3 probably comes with your operating system. If you are using MacOS and

find you do not have Python 3, it is easy to install using Homebrew. Install

Homebrew:

https://brew.sh/

and then issue the following install command:

 brew install python3

https://brew.sh/

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 39

Confidentiality: Public Distribution

It is already present in modern Linux distributions. For Windows, download and install

from:

 https://www.python.org/

Epsilon should be downloaded from its website and unarchived to /opt/eclipse.

If installed anywhere else, then set the environment variable $ECLIPSE to point to

the installation directory.

 export ECLIPSE=/my/custom/install/location

MAST can be installed by downloading the latest binary release from:

https://mast.unican.es/#downloading

This should then be unpacked and added to your system path. To check this is

installed, the tool mast_analysis should be on your system path, or you can set

the $MASTEXE variable.

 export MASTEXE=/mast/install/location/mast_analysis

You should also ensure that the PHANTOM Application Manager and Repository are

correctly set up and running.

Once installed, the tool can be asked to check its dependencies:

./offlinemom.py verify

This will error if MAST or Epsilon cannot be found, and it will attempt to use

credentials (see next section) to connect to the Repository.

 Configuration Guide

The only configuration required for the OfflineMOM is that it needs credentials to

connect to the Repository and Application Manager.

When you first run the application, it will try to read credentials.txt. Unless you have

already created it specifically, this will fail, and it will be autogenerated with default

values. You should edit this file with the username, password, and TCP port of the

PHANTOM Repository.

 Usage Guide

To start the Offline MOM, it should be told to subscribe to an Application Manager

project. To subscribe to a project called projectname use the following:

 ./offlinemom.py subscribe projectname

https://mast.unican.es/#downloading

D5.5 – Final developers‟ documentation

Page 40 Version 1.2 17 May 2019

Confidentiality: Public Distribution

The tool will connect to the Application Manager and subscribe. It will then

automatically run when new deployments are added.

It is intended that the developer does not manually interact with the OfflineMOM. It

communicates through the metadata of deployments in the PHANTOM Repository.

Files of type “deployment” will have a metadata variable “checked”. If this is not set

to “yes” then the OfflineMOM will download it, check it, and set “checked” to “yes” if

it passed all checks.

If a deployment failed at least one check, then “checked” will be set to the name of the

failing check, and the schedulability report will be uploaded to the repository in the

same location as the deployment. For example: if the deployment failed on the

fixedpriority1 check, then fixedpriority1.txt will be uploaded.

 Manual usage

If you do not want to subscribe using the Application Manager, you can trigger an

analysis manually on a project using the remote command:

 ./offlinemom.py remote projectname

The results will be output to the console.

Finally, to avoid all dependencies on the Application Manager and Repository, you

can simply run on a folder of PHANTOM XML files with local:

 ./offlinemom.py local /path/to/folder/

4.7 DEPLOYMENT MANAGER (DM)

 System requirements

The tools can be evenly executed on both Linux and Windows platforms. However,

the produced scripts that enable the compilation and deployment of the application

can only be executed on a Linux environment (a Red Hat Enterprise Linux

distribution has been tested, as well as Ubuntu 16.04 LTS and Ubuntu 18.04 LTS).

 Dependencies

During deployment the tool interacts with the PHANTOM Repository, so it is

assumed that the application is uploaded in the corresponding location, as well as the

files from preceding tools like MOM and the PT.

 Deployment Procedure

An executable jar is needed for the execution of the component. The lite version can

be directly downloaded from the following online repository:

https://github.com/PHANTOM-Platform/Deployment-Manager

https://github.com/PHANTOM-Platform/Deployment-Manager

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 41

Confidentiality: Public Distribution

 Configuration Guide

Along with the executable file, a configuration file (“config.properties”) is available

for the user to change the following fields:

 usermail: The username that is used to access the Repository.

 project: The name of the project.

 ipAddressRepo: Repository IP address

 portRepo: Repository port

 ipAddressApp: Application Manager IP address

 portApp: Application Manager port

 ipAddressMon: Monitoring Server IP address

 portMon: Monitoring Server port

 ipAddressExe: Execution Manager IP address

 portExe: Execution Manager port

 token: A valid token that can enable the use of the Repository for the requested

project

 Usage Guide

Execution steps

1. Run at terminal:

a. cd path/to/jarfile/

b. java –jar DeploymentManager.jar

2. The process from here on is automated.

a. The components are refined and the refined versions are uploaded on the

Repository

b. The Makefile is refined and uploaded on the Repository

c. The necessary scripts for the compilation and deployment of the applica-

tion are produced.

3. Application execution:

a. Automatic execution

b. Manual execution: bash deploy<execution_id>.sh

The execution of the application starts.

D5.5 – Final developers‟ documentation

Page 42 Version 1.2 17 May 2019

Confidentiality: Public Distribution

 Results

Compilation and execution scripts generation

The scripts necessary for the compilation and the execution of the application are

generated. Those are found in /path/to/jarfile.

 Coordination with other components

Parallelization Toolset

The Deployment Manager expects a notification from the PT (through the Application

Manager) in order to continue with its execution. The notification informs the DM

that the necessary modifications in the source files have been made and uploaded on

the Repository, so the deployment procedure can commence.

Repository

During execution, there are a lot of interactions with the Repository, for downloading

and uploading files.

4.8 PHANTOM FPGA LINUX SOFTWARE DISTRIBUTION

The PHANTOM Linux software distribution contains scripts to build a full Linux

environment for Zynq-7000 SoCs based on a platform definition.

 The built platform includes:

 Linux kernel

 Linux root file system (either BusyBox or Debian/Ubuntu)

 Bootloaders (Zynq FSBL and U-Boot)

 Zynq boot image

 FPGA bitstream

 Customised Linux device tree

 PHANTOM communications API (including Open MPI)

 PHANTOM component definition XML file

Prebuilt images are provided for the Xilinx ZC706 board, which just require copying

to an SD card in order to boot the system.

4.8.1 Installation

To begin, clone the repository:

git clone https://github.com/PHANTOM-Platform/ \

PHANTOM-FPGA-Linux.git

https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://github.com/PHANTOM-Platform/

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 43

Confidentiality: Public Distribution

4.8.1.1 Prerequisites

Before running the build script you will need:

 Multistrap (if using the Debian-based file system)

 The Device Tree Compiler (dtc)

 mkimage

 libssl

 QEMU

 Python 3

 Xilinx Vivado tools with Zynq-7000 support (tested with version 2018.2)

On Debian or Ubuntu-based distributions you can install these with the following

command:

sudo apt-get install multistrap device-tree-compiler u-boot-tools libssl-
dev dpkg-dev qemu-user-static python3

To install the Xilinx tools, consult the documentation that comes with Vivado. The

tools must be imported into the current environment, so that

the vivado, hsi and bootgen commands are runnable from the command line.

4.8.1.2 Quick start with prebuilt images

The prebuilt folder contains a ready-built set of images that can be used to boot

a Xilinx ZC706 board, including a default set of dummy components on the FPGA

logic and in the Linux device tree, and a BusyBox-based root file system.

To create a system with these images, first, copy the included prebuilt kernel, file

system, bitstream and boot images to be used on the board:

./make.sh prebuilt

Next, format an SD card with a FAT32 file system of at least 30MB, and ensure it is

mounted at /media/$USER/BOOT.

To copy the images to the SD card, run:

./make.sh sdcard

Insert this SD card into the ZC706 board, set the boot select switches (SW11) to 0-0-

1-1-0 for SD boot, and turn on the board with a console connected to the USB UART

at 115200 bps. Once booted, login with user "root" and password "phantom". The

FPGA components should be accessible at /dev/phantom/.

https://wiki.debian.org/Multistrap
https://git.kernel.org/pub/scm/utils/dtc/dtc.git
https://linux.die.net/man/1/mkimage
https://www.xilinx.com/support/download.html
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/prebuilt
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

D5.5 – Final developers‟ documentation

Page 44 Version 1.2 17 May 2019

Confidentiality: Public Distribution

4.8.1.3 Quick start with custom configuration

Before using the build scripts, you must create a configuration describing which

FPGA board to target, which root file system type to use, and which FPGA

components to include in the design.

These options are set in the phantom_fpga_config.json file, with the following

format:

{

 "target": {

 "board": "board_name",

 "rootfs": "rootfstype"

 },

 "ipcores": [

 {

 "ipname": "vendorname:libraryname:ipcore:1.0",

 "memory": 4096

 }

]

}

 target describes the deployment target of the design being generated, as

follows:

o board should be set to the target board type, as defined

in boardsupport.sh (e.g. zc706, zybo, zedboard)

o rootfs should be set to the desired root file system type,

either buildroot or multistrap

 ipcores should contain a list of the IP cores to include in the design, along

with their shared memory requirements, as follows:

o ipname is the name of a PHANTOM IP core available

in arch/phantom_ip/, as recognised by Vivado (the standard format of

this field in Vivado is vendor:library:name:version)

o memory is the amount of shared memory (in bytes) to reserve for access

by the IP core's master interface and associated Linux driver. The build

https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/phantom_fpga_config.json
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/boardsupport.sh
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/arch/phantom_ip

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 45

Confidentiality: Public Distribution

scripts will round this number to the next power of two, and at least

4KiB. A value of 0 means no shared memory will be available.

4.8.1.4 Building the hardware project

Ensure your PHANTOM-compatible IP cores (see later) are in arch/phantom_ip/ and

run the following:

./make.sh hwproject

./make.sh implement

4.8.1.5 Multistrap (Debian-based) root file system

If using the Debian-based root file system,

set rootfs to multistrap in phantom_fpga_config.json and generate with:

./make.sh rootfs

The script will ask for root permissions after downloading packages, to allow it to

chroot into the new file system to complete package set-up and set the root password

(the user will be prompted for this).

If Linux kernel modules or Open MPI libraries are required in the file system, these

must be built beforehand so they can be copied in. Therefore, for a complete file

system, run the following:

./make.sh sources

./make.sh kernel

./make.sh ompi

./make.sh rootfs

Note: if you get unusual errors whilst compiling, (such as that the compiler is not C

and C++ link compatible) ensure that you have sourced Xilinx's setup scripts and that

you are therefore compiling using their toolchain.

4.8.1.6 Set up an SD card (or alternative storage device)

If using the BusyBox-based root file system, the images can be copied directly to

flash memory (using a third-party tool), or to a single FAT partition on an SD card,

using the instructions below.

If using the Debian-based file system, an SD card (or similar storage) is required to

hold the boot images and root file system on separate partitions.

Format an SD card with two partitions:

1. The first, a small FAT32 partition called BOOT. This is just to hold the

bootloaders, kernel, and FPGA bitstream, so 30MB is typically plenty of

space.

https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/arch/phantom_ip
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/phantom_fpga_config.json

D5.5 – Final developers‟ documentation

Page 46 Version 1.2 17 May 2019

Confidentiality: Public Distribution

2. The rest of the card as an ext4 partition called Linux.

Ensure that the SD card partitions are mounted and that

the SDCARD_BOOT and SDCARD_ROOTFS variables at the top of make.sh are

correctly set.

Finally copy all boot files and the root file system to the SD card, using:

./make.sh sdcard

The FPGA board can now be programmed and booted to Linux using this SD card.

4.8.2 PHANTOM-compatible IP Cores

The architecture scripts build an FPGA design from a set of PHANTOM-compatible

IP cores in arch/phantom_ip/. A PHANTOM-compatible IP core has the following

characteristics:

 Exactly one AXI Slave interface, which is used to control the core via UIO-

mapped registers.

 Zero or more AXI Master interfaces which are used for high-speed access to

main memory.

 An optional interrupt line for triggering interrupt handlers in Linux userland

(not currently implemented).

The IP core should also be an IP core as generated by the Xilinx tools (such as from

Vivado HLS or packaged by Vivado).

4.8.3 Building images from sources

4.8.3.1 Setting-up board support and build variables

To build the images, the first task is to ensure the target board is defined

in boardsupport.sh, along with appropriate build variables.

To support a non-default board, the following variables should be used

in boardsupport.sh, copying the format of existing entries:

 DEVICETREE should be the name of the device tree in the Linux kernel tree to

use. Xilinx provides these for all of its boards in

the arch/arm/boot/dts/ folder of the kernel source.

 UBOOT_TARGET should be the target board to build U-Boot for. The available

configurations are in the configsdirectory of the U-Boot source.

 BOARD_PART should be the Xilinx name for the target board. You can list all of

the board parts that your Xilinx installation supports by entering the

command get_board_parts into the TCL console of Vivado.

https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/arch/phantom_ip
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/boardsupport.sh
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/boardsupport.sh
https://github.com/Xilinx/linux-xlnx/tree/master/arch/arm/boot/dts
https://github.com/Xilinx/linux-xlnx
https://github.com/Xilinx/u-boot-xlnx/tree/master/configs
https://github.com/Xilinx/u-boot-xlnx

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 47

Confidentiality: Public Distribution

The VIVADO_VERSION, OMPI_VERSION and BUILDROOT_VERSION variables can be

customised to match the desired source versions to download and build. In

particular, VIVADO_VERSION should be set to match the version of Vivado used to build

the hardware. The default Vivado version is 2018.2.

If any extra customisation is needed to the Linux kernel build, configuration

parameters can be added to the custom/kernel_config file, whose contents will be

appended to the default config (xilinx_zynq_defconfig) before the kernel is built.

The board type to use when building the system should then be set

in phantom_fpga_config.json (see above).

4.8.3.2 Building U-Boot and the Linux kernel

Once the board is defined, the Linux kernel and U-Boot sources can be downloaded

and built with the following:

./make.sh sources

./make.sh uboot

./make.sh kernel

These commands also copy the built products to the images/ folder. The U-Boot

runtime environment is generated separately based on the specific FPGA hardware

design, and can be found in images/uEnv.txt after the hardware project is created.

4.8.3.3 Creating an FPGA hardware design

The PHANTOM distribution also contains the scripts that create PHANTOM-

compatible FPGA designs. A PHANTOM hardware design encapsulates a set of IP

cores, makes them available to the software running in the Linux distribution, and

includes the various security and monitoring requirements of the PHANTOM

platform.

To build a hardware project, first check ensure that the IP cores you are using are in

the arch/phantom_ip/ directory. This directory already contains two dummy IP cores,

which can be used for testing.

Next, edit phantom_fpga_config.json to describe the specific hardware design

requirements, including FPGA board type, the IP cores to include, and the shared

memory requirements of those IP cores (see above for a description of the file

structure).

Once set, execute the following to create the hardware project and then perform

Vivado implementation on the design to produce a bitstream:

./make.sh hwproject

./make.sh implement

https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/custom/kernel_config
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/phantom_fpga_config.json
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/arch/phantom_ip
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/phantom_fpga_config.json

D5.5 – Final developers‟ documentation

Page 48 Version 1.2 17 May 2019

Confidentiality: Public Distribution

The resulting hardware project will be created in the hwproj/ directory. Alongside the

hardware project itself, the scripts will generate a matching PHANTOM component

definition XML file, Linux device tree overlay describing the hardware, and a

compatible U-Boot environment definition, all output to images/.

4.8.3.4 Device tree generation

You must have a suitable device tree for U-Boot and the Linux kernel to work on your

target board. Xilinx's Linux kernel repository contains device trees for many boards in

the arch/arm/boot/dts/ folder. These all reference a base tree called zynq-

7000.dtsi which describes the generic Zynq SoC architecture. If your target board

requires a custom device tree, ensure it is copied into the kernel and U-Boot source

tree and matches the associated definitions in boardsupport.sh.

In order to leave the board's Linux kernel device tree untouched, PHANTOM

components are described in a device tree overlay, which is dynamically applied to

the base device tree on each boot by U-Boot. The build scripts create this device tree

overlay based on the PHANTOM component definition XML output from the

hardware project creation. See arch/generate_environment.py for how this overlay is

generated.

The base device tree and device tree overlay are generated when building the kernel

and hardware project respectively, but if required they can be built separately using:

./make.sh devicetree

4.8.3.5 Generating an FSBL

An FSBL (first stage bootloader) is required to start the boot process, and sets up

various components of the Zynq-7000 device.

You can generate an FSBL based on the current hardware design and board type,

using:

./make.sh fsbl

This will create images/fsbl.elf. Alternatively, an FSBL can be created using Xilinx

SDK.

4.8.3.6 Creating a boot image

The FSBL and U-Boot must be combined into a single boot image in order to boot a

board from an SD card.

After the FSBL and U-Boot executables are generated, of if they change, the boot

image can be created using:

./make.sh bootimage

This will create images/BOOT.bin. Alternatively, a boot image can be created using

Xilinx SDK.

https://github.com/Xilinx/linux-xlnx
https://github.com/Xilinx/linux-xlnx/tree/master/arch/arm/boot/dts
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/boardsupport.sh
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/arch/generate_environment.py

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 49

Confidentiality: Public Distribution

4.8.3.7 Building Open MPI

Open MPI can be downloaded and built for Linux on the Zynq using the build scripts,

and will be installed to /opt on the created root file system by default.

Set the OMPI_VERSION variable in boardsupport.sh as required (the default is to use

v3.0.0). If needed, the download URL can also be customised by changing OMPI_URL.

Open MPI can then be built and installed with the following:

./make.sh sources

./make.sh ompi

Open MPI must be built before creating the root filesystem, if it is to be included.

4.8.3.8 Creating a root file system

The make script can create either a Debian-based root file system using Multistrap, or

a BusyBox-based root file system using Buildroot. The Debian file system is designed

to be mounted as the system's main persistent storage (e.g. from an SD card), whereas

the BusyBox system is better suited to running as an ephemeral RAM disk.

The file system can be generated by setting the rootfs type

in phantom_fpga_config.json to either multistrap or buildroot, then running:

./make.sh sources # (if using Buildroot)

./make.sh rootfs

If the appropriate sources have been downloaded and built beforehand, this will also

copy Open MPI, Linux kernel modules and the PHANTOM API libraries into the file

system.

Alternative Linux file systems can be used, but are not supported by these scripts.

Buildroot file system customisation

The Buildroot-generated file system can be modified using the configuration file,

post-build script and file system overlay in the buildroot-phantom folder.

More information is available in the Buildroot manual.

Multistrap file system customisation

The basic contents of the file system can be customised by

editing multistrap/multistrap.conf before building. This file defines the packages

included, as well as the Debian version to use (both Debian 8 (Jessie) and 9 (Stretch)

should work). The default configuration uses Debian 9 (Stretch), and includes a

selection of useful packages for a fairly full-featured system.

As an alternative to Debian, an optional Ubuntu 18.04 LTS (Bionic Beaver)

configuration is also included, in multistrap/multistrap-ubuntu.conf. To use this,

replace multistrap/multistrap.conf with this file.

https://www.open-mpi.org/
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/boardsupport.sh
https://www.debian.org/
https://wiki.debian.org/Multistrap
https://busybox.net/
https://buildroot.org/
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/phantom_fpga_config.json
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/buildroot-phantom
https://buildroot.org/downloads/manual/manual.html
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/multistrap/multistrap.conf
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/multistrap/multistrap-ubuntu.conf
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/multistrap/multistrap.conf

D5.5 – Final developers‟ documentation

Page 50 Version 1.2 17 May 2019

Confidentiality: Public Distribution

The multistrap/rootfs_setup.sh script is run to set-up the Multistrap system after

packages have been downloaded. This file can be modified to customise this process.

Additional files can be added to the root file system automatically by the make script

by placing them in the multistrap/overlay/ folder.

4.8.3.9 File system size

The Debian root file system created by the scripts is designed to be copied to an SD

card and mounted as the system's main storage, so can be quite large.

The following are estimated sizes for the built file system, where 'complete' is the full

default included multistrap.confand 'minimal' is only the base Debian packages

required for booting:

 Jessie (complete) - 388MB

 Jessie (minimal) - 186MB

 Stretch (complete) - 395MB

 Stretch (minimal) - 169MB

This includes around 13MB for Open MPI, kernel modules and the PHANTOM API

on top of the Debian system.

The compressed image of the BusyBox file system is around 10MB by default (with

Open MPI, kernel modules and PHANTOM API included).

4.8.4 Support files for additional boards, etc.

The support/ folder contains a range of additional files that can be installed for

working with non-standard boards, as well as potentially useful kernel patches and

optional configuration options.

See support/README.md for more information.

4.8.5 Running a full build from sources

The following series of make script commands will run a typical full build and install

of all components from sources. This is equivalent to ./make.sh all.

The contents of phantom_fpga_config.json should be set before starting the build

process, and the SD card partitioned and mounted ready for use.

If any Linux kernel, U-Boot or Buildroot customisations are required (patches,

overlays, etc.), these should be applied after fetching sources but before building these

components.

./make.sh sources

./make.sh hwproject

./make.sh implement

https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/multistrap/rootfs_setup.sh
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/multistrap/overlay
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/support
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/support/README.md
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/blob/master/phantom_fpga_config.json

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 51

Confidentiality: Public Distribution

./make.sh fsbl

./make.sh uboot

./make.sh bootimage

./make.sh kernel

./make.sh ompi

./make.sh rootfs

./make.sh sdcard

4.9 MONITORING FRAMEWORK – SERVER

The PHANTOM Monitoring Server is one part of the PHANTOM Monitoring Frame-

work, which supports monitoring of performance and power metrics for heterogeneous

platforms and hardware.

4.9.1 Introduction

The PHANTOM Monitoring Server is composed of two components: a web server

and a data storage system. The web server provides various functionalities for data

query and data analysis via RESTful APIs with documents in JSON format. The serv-

er's URL are "http://localhost:3033" by default. The default port for the https service

is 3043.

Figure 16: Monitoring Server

http://localhost:3033/
https://github.com/PHANTOM-Platform/Monitoring/blob/master/Monitoring_server/d2.2.mf-server_v2.png

D5.5 – Final developers‟ documentation

Page 52 Version 1.2 17 May 2019

Confidentiality: Public Distribution

4.9.2 Prerequisites

The Monitoring Server receives data from the PHANTOM monitoring client via

RESTful interfaces. The server is implemented using Node.js, and connects to Elas-

ticsearch to store and access metric data. Before you start installing the required com-

ponents, please note that the installation and setup steps mentioned below assume that

you are running a current Linux as operating system. The installation was tested with

Ubuntu 16.04 LTS as well as with Scientific Linux 6 (Carbon). Before proceeding,

cloning the repository is required:

svn export https://github.com/PHANTOM-

Platform/Monitoring.git/trunk/Monitoring_server Monitoring_server

4.9.3 Dependencies

This project requires the following dependencies to be installed:

Component Homepage Version

Elasticsearch https://www.elastic.co/products/elasticsearch = 2.4.6

Node.js https://apr.apache.org/ >= 4.5

npm https://www.npmjs.com/ >= 1.3.6

4.9.4 Installation

This section assumes that all required dependencies have been successfully installed

as described in the previous paragraphs.

Shell script for Intel-x86 32bits (tested on Ubuntu):

 bash setup-server-x86-32.sh

or the Shell script for Intel-x86 64bits (tested on Ubuntu):

 bash setup-server-x86-64.sh

or the Shell script for Armv7l 64bits (tested on Raspbian):

 bash setup-server-armv7-64.sh

This setup provides the configuration to the elastic-search by placing in the appropri-

ate folder the file elasticsearch.yml (from this repository). That configuration file

makes that ElasticSearch uses the port 9400 instead of the default port 9200.

4.9.5 Start/Stop the server

Starting the PHANTOM Monitoring Server by executing the next script. For security

reasons, the services may not start if they are requested from root.

 bash start-monitoring-server.sh

https://github.com/PHANTOM-Platform/Monitoring/tree/master/Monitoring_client
https://github.com/PHANTOM-Platform/Monitoring.git/trunk/Monitoring_server
https://github.com/PHANTOM-Platform/Monitoring.git/trunk/Monitoring_server
https://www.elastic.co/products/elasticsearch
https://apr.apache.org/
https://www.npmjs.com/

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 53

Confidentiality: Public Distribution

The server can be stop with the script:

 bash stop-monitoring-server.sh

In case of issues it can be verified that the Monitoring Server is running and has ac-

cess to the database with the next scripts.

Test of the Nodejs Front-end running service:

 curl http://localhost:3033;

Test if the Front-end has access to the ElasticSearch database Server.

 curl -s http://localhost:3033/verify_es_connection;

To access to the Web-Interface, access with your internet browser to

http://localhost:3033/monitoringserver.html

4.9.6 Reference manual of the RESTful API

The Reference manual of PHANTOM Monitoring Server RESTful API contains description

of each of the implemented methods, with examples of use, and type of possible responses.

The manual is built with the tool APIDOC, and formatted in a friendly HTML, where users

can find a classification of the methods and a searching box. The manual is available online

at https://phantom-platform.github.io/Monitoring/docs/ (see next figure).

Figure 17. Screenshot of the Online Reference Manual of the PHANTOM Monitoring Server API

4.10 MONITORING FRAMEWORK – CLIENT

The PHANTOM Monitoring Client is one part of the PHANTOM Monitoring Frame-

work, which supports metrics collection based on hardware availabilities and platform

http://localhost:3033/verify_es_connection
http://localhost:3033/monitoringserver.html
https://phantom-platform.github.io/Monitoring/docs/

D5.5 – Final developers‟ documentation

Page 54 Version 1.2 17 May 2019

Confidentiality: Public Distribution

configuration. The target platform of the monitoring client includes CPUs, GPUs, Myri-

ad2, ACME power measurement kit and FPGA-based platform.

4.10.1 Introduction

The essential functionality of PHANTOM monitoring client is metrics collection,

which is implemented by various plug-ins according to the hardware accessibility.

Currently 7 plug-ins are supported, whose implementation and design details are col-

lected in the directory src/plugins. The monitoring client is designed to be plugga-

ble. Loading a plug-in means starting a thread for the specific plug-in based on the us-

ers‟ configuration at run-time. The folder src/agent plays a role as the main control

unit, as managing various plug-ins with the help of pthreads. Folders like src/core,

src/parser, and src/publisher are used by the main controller for accessorial sup-

port, including parsing input configuration file (src/mf_config.ini), publishing

metrics via HTTP, and so on.

For code instrumentation and user-defined metrics collection, we provide a monitor-

ing library and several APIs, which are kept in the directory src/api. Descriptions in

detail about how to use the monitoring APIs are given also in this directory.

Figure 18: Monitoring Client

4.10.2 Prerequisites

The Monitoring Client requires at first a running server and database. In order to in-

stall these requirements, a checkout of the associated PHANTOM monitoring server

and follow the setup instructions given in the repository README.md file. A successful

https://github.com/PHANTOM-Platform/Monitoring/tree/master/Monitoring_server
https://github.com/PHANTOM-Platform/Monitoring/blob/master/Monitoring_client/d3.2.mf-library.png

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 55

Confidentiality: Public Distribution

setup process can be checked by the following command as testing whether the server

is running in the specific url:

 curl http://localhost:3033;

Note that the installation and setup steps mentioned below assume that you are run-

ning a current Linux as operating system. We have tested the monitoring agent with

Ubuntu 14.04 LTS as well as with Scientific Linux 6 (Carbon).

Before proceeding, cloning the repository is required:

svn export https://github.com/PHANTOM-

Platform/Monitoring.git/trunk/Monitoring_client Monitoring_client

4.10.3 Dependencies

This project has the following dependencies:

Component Homepage Version

PAPI-C http://icl.cs.utk.edu/papi/ 5.4.0

CURL http://curl.haxx.se/download/ 7.37.0

Apache APR https://apr.apache.org/ 1.6.3

Apache APR Utils https://apr.apache.org/ 1.6.1

Nvidia GDK https://developer.nvidia.com/gpu-deployment-kit/

for 64 bits system

352.55

for 32 bits system

340.29

bison http://ftp.gnu.org/gnu/bison/ 3.0.2

flex http://prdownloads.sourceforge.net/flex/ 2.6.0

sensors https://fossies.org/linux/misc/ 3.4.0

m4 https://ftp.gnu.org/gnu/m4 1.4.17

libiio https://github.com/analogdevicesinc/libiio.git 1.0

hwloc https://www.open-mpi.org/software/hwloc/v1.11/downloads/ 1.11.2

EXCESS queue https://github.com/excess-project/data-structures-library.git release/0.1.0

Notice: The version of the packages are the same for 32 and 64 bits systems, except

for the version of Nvidia GDK.

To ease the process of setting up a development environment, we provide a basic

script that downloads all dependencies, installs them locally in the project directory,

and then performs some clean-up operations. Thus, compiling the monitoring client

can be performed in a sandbox without affecting your current operating system.

Executing the next script if your device has a 32 bits Operating System:

 bash setup-client-32.sh;

OR Executing the next script if your device has a 64 bits Operating System:

http://localhost:3033/
https://github.com/PHANTOM-Platform/Monitoring.git/trunk/Monitoring_client
https://github.com/PHANTOM-Platform/Monitoring.git/trunk/Monitoring_client
http://icl.cs.utk.edu/papi/
http://curl.haxx.se/download/
https://apr.apache.org/
https://apr.apache.org/
https://developer.nvidia.com/gpu-deployment-kit/
http://ftp.gnu.org/gnu/bison/
http://prdownloads.sourceforge.net/flex/
https://fossies.org/linux/misc/
https://ftp.gnu.org/gnu/m4
https://github.com/analogdevicesinc/libiio.git
https://www.open-mpi.org/software/hwloc/v1.11/downloads/
https://github.com/excess-project/data-structures-library.git

D5.5 – Final developers‟ documentation

Page 56 Version 1.2 17 May 2019

Confidentiality: Public Distribution

 bash setup-client-64.sh;

results (in any of these cases) in a new directory named bin, which holds the required

dependencies for compiling the project.

4.10.4 Installation

This section assumes that you've successfully installed all required dependencies as

described in the previous paragraphs.

 make clean-all

 make all

 make install

The above commands clean, compile and install the monitoring agent into the directo-

ry dist within the project's repository. The dist folder includes all required binaries,

shared libraries, scripts, and configuration files to get you started. The Makefile has

been tested with GNU compiler version 4.9.2.

4.10.5 Start monitoring

If you haven't yet followed our guide to set up the associated monitoring server and

database, please do so now before continuing. Next, start the monitoring client with a

default set of plugins enabled to monitor as follows:

 cd scripts

 ./start.sh

You can learn more about various options passed to the monitoring client by calling

 ./start.sh -h

While the monitoring client is started and is collecting metric data, you can use the

RESTful APIs provided by the monitoring server to retrieve run-time metrics and cor-

responding statistics.

4.10.6 Configuring plug-ins and update intervals

The Monitoring Client as well as plug-ins are configurable at run-time by a global

configuration file named mf_config.ini. The configuration is implemented by using

an INI file; each section name such as timings or plugins is enclosed by square

brackets. For each section, various parameters can be set. These parameters are cus-

tom-defined for each plug-in.

 ;PHANTOM Monitoring Client Configuration

 [generic]

 server = http://localhost:3033/v1

 ...

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 57

Confidentiality: Public Distribution

 [plugins]

 mf_plugin_Board_power = on

 mf_plugin_CPU_perf = off

 ...

 [timings]

 default = 1000000000ns

 update_configuration = 360s

 mf_plugin_Board_power = 1000000000ns

 ...

 [mf_plugin_Board_power]

 ACME_BOARD_NAME = baylibre-acme.local

 device0:current = on

 device0:vshunt = off

 device0:vbus = off

 device0:power = on

 ...

Several parameters such as the timing of the plug-ins or the server where the server

is running can be configured through this configuration file. The file is called

mf_config.ini and is located at dist/mf_config.ini.

4.11 SECURITY MANAGER

The scope of the PHANTOM security effort was delineated in Section 9 of the

deliverable D1.2 – First design for Cross-layer Programming, Security and Runtime

monitoring. This section describes the deployment of the PHANTOM Security

Manager. Discussed here is primarily the access control system based on the Next

Generation Access Control standard.[11] This aspect of PHANTOM security is

implemented by distinct security components. The execution integrity aspect of

PHANTOM security is achieved through the architectural combination and features of

the components of the PHANTOM framework that enable a component network to be

transparently and effectively realised.

 Introduction

The PHANTOM Security Manager access control system is composed of two

components, the „ngac‟ Policy Tool and the „ngac-server‟ Policy Server. The Policy

Tool is used to test NGAC policies during their development. The Policy Server uses

those policies to provide a runtime policy decision making service. These components

share a common set of Prolog source modules and their separate executables are

constructed with a simple shell script, mkngac, which accompanies the sources. A

primary objective of the „ngac‟/‟ngac-server‟ development is to create a lightweight and

highly portable access control framework that can be easily adapted to different

situations and applications, that has a minimum of external dependencies, and that

requires minimal resources to run. This objective has been achieved to a high degree in

the current implementation. The design, features, and API and user interfaces of the

NGAC implementation, and of the design of execution integrity through isolation and

communication control, are described in Section 2.7 of the deliverable D1.4 – Final

design for Cross-layer Programming, Security and Runtime monitoring.

D5.5 – Final developers‟ documentation

Page 58 Version 1.2 17 May 2019

Confidentiality: Public Distribution

The „ngac‟ Policy Tool is used to do standalone development and testing of policy files.

The „ngac-server‟ Policy Server is integrated with the PHANTOM Repository, which

has modules that act as the NGAC Policy Enforcement Point (PEP) and Resource

Access Point (RAP) of the NGAC Functional Architecture, as described in Section 2.3

of the deliverable D5.2 – Integrated reference system.

 Prerequisites

The „ngac‟ Policy Tool and the „ngac-server‟ Policy Server are implemented in the

Prolog language and require the SWI-Prolog environment to run. The software is pro-

vided as a set of Prolog source files and/or as “executable” files that have the Prolog

runtime environment already linked in.

SWI-Prolog is available for several operating environments, including Microsoft

Windows (64 bit) and (32 bit), MacOS X 10.6 and later on Intel, and several Linux

versions including Ubuntu. It is also available in Docker containers and as a source

distribution that one can build locally.

Our NGAC implementation uses only the libraries that come with the Prolog distribu-

tion. Furthermore we‟ve organised the functional architecture so as to place adapta-

tion into the hands of application developers without requiring modification to the

core implementation. This is in contrast to the reference implementations that have so

many external dependencies (some obsolete) so as to be very cumbersome to work

with and not very portable or adaptable.

To begin, clone the GitHub repository for the Policy Tool and Server located at:

https://github.com/PHANTOM-Platform/Security-Server

 Dependencies

This project has the following sole dependency:

Component Homepage Version

SWI Prolog www.swi-prolog.org = 7.6.4

 Installation

Prior to installation or building of the Security Manager it is required that swipl be

installed. The exception to this requirement is if there is already a compiled version of

„ngac‟ and „ngac-server‟ for the target platform, in which case all the dependencies are

already linked into the executable.

The software consists of a directory that includes source files and the executable files,

ngac and ngac-server. It is advisable to remake the executables since if your system

differs from the distribution system where the executables were built, the executables

are not likely to run. The executables for the „ngac‟ Policy Tool and the „ngac-server‟

Policy Server are made by the shell script mkngac, located with the source files, that

https://github.com/PHANTOM-Platform/Security-Server
http://www.swi-prolog.org/

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 59

Confidentiality: Public Distribution

must be run in an environment that has SWI-Prolog installed. There are also several

subdirectories with EXAMPLES, data FILES, and TEST files.

 Remake the executables with the provided shell script mkngac. After doing so

you should be able to execute ngac directly from a command shell prompt. If

you do this skip through the following steps to “Now you should see …” below.

 Otherwise, in the source directory start SWI-Prolog from a command shell

prompt using the name of the SWI-Prolog executable (usually „swipl‟, „swi-pl‟,

or something similar, depending on how it was installed).

 After printing a short banner SWI-Prolog will display its prompt “?- “.

 At the Prolog prompt enter “[ngac].” (not the quotes, but do enter the full stop)

The top level file ngac.pl ensures that all the other necessary modules are

loaded.

 Prolog will compile the code and print “true.”

 Execute the code by entering at the Prolog prompt “ngac.” This is the entry point

for the Policy Tool.

 Now you should see the „ngac‟ prompt “ngac>”

 The „ngac‟ commands, documented in D2.2 section 5.3.2 as well as in a release

note in the source directory, are now available. Entering the command “help”

will list the available commands in the current mode (there are two modes:

admin and advanced, the latter used primarily for development and testing).

 Usage Guide

The „ngac‟ policy tool presents a command line interface that offers a defined set of

commands. The command interpreter also offers selective tracing of commands for

development and debugging of the tool itself. The „ngac‟ command interpreter is easily

extensible for new commands, and this ability has been frequently used during the

implementation of the „ngac‟ software. The syntax and simple semantic checking of

commands are achieved declaratively, and the addition of a new command is

straightforward. There are two levels of commands: a restricted set for ordinary users

(typically security administrators) and an expanded set that includes commands that are

primarily of use to the tool developers.

The „ngac‟ tool has some self-tests built in. These may be run to ensure that everything

is working correctly after installation, or after source code changes are made. The self-

tests can be run by starting „ngac‟ normally and entering at the „ngac>‟ prompt the

command “selftest.”

D5.5 – Final developers‟ documentation

Page 60 Version 1.2 17 May 2019

Confidentiality: Public Distribution

There are several example policies included with the sources of the ngac Policy Tool.

These include examples from the NGAC literature and are described in other project

documents.

There are predefined command procedures (“procs”) that run some examples. At the

ngac> prompt a predefined procedure (e.g. one may develop a command procedure

named “myproc”) can be run with the command proc(myproc). It can be run with

verbose output with the command proc(myproc,verbose). It can be run with a

pause before each command (useful for demos) with the command
proc(myproc,step).

It is instructive to read the file procs.pl that defines the predefined procedures. The

procedures each consists of a few of the commands available at the ngac> prompt. The

user may define additional procedures in the procs.pl file for subsequent execution as

above.

„ngac‟ commands can also be put into a file and executed as a script, without modifying

the procs.pl file, using the script command, which like proc accepts the optional

arguments verbose and step.

 ‘ngac-server’ Deployment Procedure

The ngac server should be started with a compiled executable. This is preferable since it

allows the command line options to be specified. Consult deliverable D1.4 or the re-

lease note for the command options.

There is a shell script of curl commands included with the source (servercurltest.sh) in

the TEST subdirectory. This script can be run to send a sequence of requests to the

server to test for known correct answers. (This script does not run a complete set of

tests, it‟s just intended to test that the server is responding.)

 Manual usage

If you do want to start the server from the policy tool follow the instructions above to

get „ngac‟ running. After starting „ngac‟ it offers the prompt “ngac>”. There are a set of

basic commands available in the normal mode (admin) and an extended set of com-

mands for use by a developer in development mode (advanced). Entering the command

“help” will list the available commands in the current mode.

If you want to load any policy files, do it now with the „ngac‟ command im-

port(policy(PolicyFileName))., where PolicyFileName is the name of a .pl

file relative to the execution directory. You can also combine policies with the „ngac‟

compose command. When you have the desired policies loaded and composed, start

the server from the „ngac‟ tool using the command server(PortNumber)., where

PortNumber is an unused TCP port. The server will be started and will be listening to

that port for calls to its RESTful API. A server started in this way will expect the de-

fault admin token (the string “admin_token”, without the quotes) in the policy admin-

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 61

Confidentiality: Public Distribution

istration API calls. Starting the server executable file provides the opportunity to set an

alternative admin token. (It is also possible to change the admin token from the „ngac‟

command line using the set command, before issuing the server command.)

 Background usage

The „ngac-server‟ can be run in the background from a startup script. To the command

„ngac-server‟ add any desired command line options and append a “&” to run the

process in the background.

 Configuration Guide

The tool can be easily extended in several ways.

 Commands can be added by modifying the command module to add a syntax,

semantics (optional), help, and do clause for the new command. A

syntax clause must be added for the command. This clause declares the

command name and parameters, and what mode the command belongs to, admin

or advanced. Admin commands are available in admin mode, but also accessible

in the advanced mode but not vice versa.

 The self-test framework is implemented in the test module. Tests for specific

new modules can be added in the TEST subdirectory. An example of a test

definition file for the spld module is implemented in TEST/spld_test.pl.

 New predefined „ngac‟ command procedures can be added to the procs

module. A proc clause is added for each new procedure to be defined. There

are examples in the procs.pl file.

Global parameters are set in the param module. Settable parameters (those that can be

changed from the „ngac‟ command line with the set command) are itemized in a list

settable_params. Adding new settable parameters requires the new parameter name

to be added to this list and to the dynamic directive above it in a fashion similar to the

other entries.

4.12 MODEL-BASED TESTING (MBT)

MBT is designed and implemented as four different activities in PHANTOM and thus

the deployment guide contains the following guide.

In addition to working installation of TITAN and DIVERSITY that you can obtain from

the Eclipse foundation platform:

D5.5 – Final developers‟ documentation

Page 62 Version 1.2 17 May 2019

Confidentiality: Public Distribution

4.12.1 Model Simulation

 System requirements

The model simulation is based on Windows OS, under the condition that the

dependencies listed below is correctly installed with the proper configuration.

 Dependencies

The model simulation is achieved by DIVERSITY tool [7], so the dependency is to

install DIVERSITY in Windows.

DIVERSITY has an issue with TTCN-3 publication and you will need this additional

scripts to correct DIVERSITY output

https://github.com/PHANTOM-Platform/MBT-TTCN3-Publisher-for-Diversity

 Deployment Procedure

The deployment procedure is as follows:

1. Download the installation package from [7] to any directory in the OS.

2. Run the avm.exe file to install the tool

 Usage Guide

Model validation simulates the MBT models created following design specifications to

check if the intended implementation of applications contains any deadlock or

overdesign meaning that certain functions are never used. The user is expected to

develop a model to simulate or import an existing model to the DIVERSITY tool, and

then the tool will start the simulation process and output results.

4.12.2 Performance Estimation

 System requirements

The MBT system is generally independent of hardware and can run upon different

hardware with Linux or Windows OS, under the condition that the dependencies listed

below is correctly installed with the proper configuration.

 Dependencies

The Performance Estimation is developed in the languages of Python (version 3), so the

dependency to run MBT system is to have python compiler installed in the OS.

https://github.com/PHANTOM-Platform/MBT-TTCN3-Publisher-for-Diversity

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 63

Confidentiality: Public Distribution

Scripts are available on github:

https://github.com/easy-global-market/PHANTOM_Performance_Estimator

 Deployment Procedure

The deployment procedure is described as follows:

1. Unzip the source to any directory in the OS.

2. Run the performance estimator via the following command, where

[input_component_network] is the input component network with full name and path.

python PerformanceEstimator.py [input_component_network]

 Configuration Guide

The following two variables can be configured at the beginning of the source code in

PerformanceEstimator.py file:

 tested_component_results_file_path

 output_estimation_result_file_path

The "tested_component_results_file_path" indicates where the previous testing result

file can be found to support the performance estimation, and the

"output_estimation_result_file_path" indiciates the target file to store the performance

estimation result.

 Usage Guide

Performance estimation estimates the non-functional properties (e.g., execution time,

energy consumption) of newly designed applications by analyzing PHANTOM

component network and previous non-functional testing results.

The input is the xml file of the "ComponentNetwork" of an application describing the

inner components and their communications following PHANTOM specification, while

the output is the estimation result to terminal and destination xml file. No external

framework is needed to support the execution.

The user defines a component network file and running the command above will start

the estimation process and output result.

D5.5 – Final developers‟ documentation

Page 64 Version 1.2 17 May 2019

Confidentiality: Public Distribution

4.12.3 Test Execution for Functional Testing and Non-functional Testing

 System requirements

The MBT test execution system is generally independent of hardware and can run upon

different hardware with Linux or Windows OS, under the condition that the

dependencies listed below is correctly installed with the proper configuration.

 Dependencies

The MBT system is developed in the languages of TTCN-3 (for testing control part) and

C++ (for execution part), so the dependency to run MBT system is to have both C++

and TTCN-3 compiler installed in the OS.

C++ compiler: Any of the mainstream C++ compilers (e.g., GCC, MinGW, etc.) are

enough.

TTCN-3 compiler: Eclipse Titan [8] is a TTCN-3 compilation and execution support

with an Eclipse-based IDE. Two ways exist to install Titan in the system, the first way

is to directly download and install the precompiled version of Titan from [9], and the

second is to download the source code from [10] and compile it from sources.

Scripts to compile and execute the PHANTOM testcases are available on github:

https://github.com/PHANTOM-Platform/MBT-Test-Execution

 Deployment Procedure

The deployment procedure is described as follows:

1. Unzip the source to any directory in the OS.

2. run the nstall.sh from mbttest directory, by /install.sh, this step will

- creates a ./bin directory

- creates symlinks to the necessary source files

- creates a Makefile suitable to compile the project

- compiles the project having the final executable name to be "mbttest"

3. Edit the configuration file MyExample.cfg using any test editor to specify the server

addresses, the inputs and output files locations, and the different project parameters.

4. Run the MBT systems by using the following command under the directory ./bin

- ttcn3_start ./mbttest ./MyExample.cfg

https://github.com/PHANTOM-Platform/MBT-Test-Execution

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 65

Confidentiality: Public Distribution

 Configuration Guide

The configuration of the MBT system is done by modifying the configuration file

“MyExample.cfg” under the source file directory. The configuration file mainly

contains the following information.

 Server and ports information of PHANTOM modules to interacts

 Authentication parameters for users/password/tokens

 File upload and download parameters to indicate the inputs files and output files

location

 Usage Guide

Running the MBT system will execute the test cases specific to each use case

application. Specifically, during the execution, the MBT system realizes the following

steps to examine the functional and non-functional correctness of the use case.

Step 1. Testing system sends a) testing inputs (files), and b) deployment plan (xml file)

to Repository;

*deployment plan indicates on which hardware the application components should be

executed.

Step 2. Testing system sends the execution request (JSON message) to Application

Manager, and receives the execution id (JSON message) from Application Manager;

*execution id is a unique identifier to identify one specific execution of an application.

Step 3. Testing system subscribes to the execution status by sending a subscription re-

quest (JSON message) to Execution Manager;

Step 4. Testing system waits until receives the notification (JSON message) from Exe-

cution Manager, indicating the execution is over;

Step 5. Testing system retrieves execution outputs (files) from Repository;

Step 6. Testing system retrieves performance Information (JSON message) from Execu-

tion Manager; (Get query)

Step 7. Testing system generates testing verdicts based on the real outputs and/or per-

formance information.

4.13 APPLICATION MANAGER

This section describes the deployment of the PHANTOM Application Manager and pro-

vides a usage guide. These instructions may evolve fruit to extensions and improvements

of the repository resulting from future work. Such updates will be available at [1]. Addi-

tionally, there are some video tutorials available at the PHANTOM YouTube channel [2].

The PHANTOM Application Manager server is composed of two components: a web

server (http://) and a WebSocket server (ws://). The web server provides various function-

D5.5 – Final developers‟ documentation

Page 66 Version 1.2 17 May 2019

Confidentiality: Public Distribution

alities for data query and data analysis via RESTful APIs with documents in JSON for-

mat. The server's URL is "http://localhost:8500" by default. The default port for the https

service is 8510.

PHANTOM Application Manager server keeps track of the status of the running tasks

(PHANTOM tools).

This server allows users to subscribe by using web sockets to get notifications on the

changes on the tasks' status. Such notifications consists on forwarding a copy of the up-

loaded JSON.

4.13.1 Prerequisites

The server is implemented using Node.js, and connects to ElasticSearch to store and

access Metadata. Before you start installing the required components, please note that

the installation and setup steps mentioned below assume that you are running a cur-

rent Linux as the operating system. The installation was tested with Ubuntu 16.04 and

17.04 LTS. Before you can proceed, please clone the repository:

 git clone https://github.com/PHANTOM-Platform/Application-Manager.git;

4.13.2 Dependencies

This project has the following dependencies:

Component Homepage Version

Elasticsearch https://www.elastic.co/products/elasticsearch = 2.4.6

Node.js https://apr.apache.org/ >= 4.5

npm https://www.npmjs.com/ >=1.3.6

4.13.3 Installation

Before the installation of the Application Manager it is required that npm be installed

in advance. Once it is successfully installed. The Repository and the other required

packages are automatically installed running one of the following scripts. Please

choose the appropriate shell scripts depending on your Operating System:

Shell script for Intel-x86 32bits (tested on Ubuntu):

 bash setup-server-x86-32.sh

or the Shell script for Intel-x86 64bits (tested on Ubuntu):

 bash setup-server-x86-64.sh

or the Shell script for Armv7l 64bits (tested on Raspbian):

 bash setup-server-armv7-64.sh

http://localhost:8500/
https://github.com/PHANTOM-Platform/Application-Manager.git
https://www.elastic.co/products/elasticsearch
https://apr.apache.org/
https://www.npmjs.com/

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 67

Confidentiality: Public Distribution

The default port is 8500, which can be modified at the file appmanager_app.js.

4.13.4 Start/Stop the server

Starting the PHANTOM Application Manager by executing the next script. For secu-

rity reasons, the services may not start if they are requested from root.

 bash start-appmanager.sh;

The server can be stop with the script:

 bash stop- appmanager.sh;

In case of issues it can be verified that the Application Manager is running and has

access to the database with the next scripts.

Test of the Nodejs Front-end running service:

 curl http://localhost:8500;

Test if the Front-end has access to the ElasticSearch database Server.

 curl -s http://localhost:8500/verify_es_connection;

To access to the Web-Interface, access with your internet browser to

http://localhost:8500/appmanager.html

4.13.5 Configuration of USERS' accounts

After the installation, and before users can use the Application Manager, it is needed

to register the users.

The script setup-new-server.sh provides an automatic method for register multiple us-

ers. In particular, the script registers the list of users_ids and passwords from the file

list_of_users.ini.

 bash setup-new-server.sh

NOTICE: For security reasons, users' accounts can be ONLY registered on the server.

Requests from different IPs will be rejected.

4.13.6 Example of use

The folders on the GitHub api_command_line, and api_bash_scripts show examples

of using the PHANTOM Application Manager. Please access to those folders to get

more details.

http://localhost:8500/verify_es_connection
http://localhost:8500/appmanager.html
https://github.com/PHANTOM-Platform/Repository/tree/master/api_command_line
https://github.com/PHANTOM-Platform/Repository/tree/master/api_bash_scripts

D5.5 – Final developers‟ documentation

Page 68 Version 1.2 17 May 2019

Confidentiality: Public Distribution

4.13.7 Reference manual of the RESTful API

The Reference manual of PHANTOM Application Manager RESTful API contains descrip-

tion of each of the implemented methods, with examples of use, and type of possible re-

sponses. The manual is built with the tool APIDOC, and formatted in a friendly HTML,

where users can find a classification of the methods and a searching box. The manual is

available online at https://phantom-platform.github.io/Application-Manager/ (see next fig-

ure).

Figure 19. Screenshot of the Online Reference Manual of the Application Manager API

4.14 RESOURCE MANAGER

Server which keeps track of the Status of the Available hardware in the system.

This section describes the deployment of the PHANTOM Resource Manager and pro-

vides usage guides. These instructions may evolve fruit to extensions and improvements

of the repository resulting from future work. Such updates will be available at [1]. Addi-

tionally, there are some video tutorials available at the PHANTOM YouTube channel [2].

The PHANTOM Resource-Manager server is composed of two components: a web server

(http://) and a WebSocket server (ws://). The web server provides various functionalities

for data query and data analysis via RESTful APIs with documents in JSON format. The

https://phantom-platform.github.io/Application-Manager/

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 69

Confidentiality: Public Distribution

server's URL is "http://localhost:8600" by default. The default port for the https service is

8610.

PHANTOM Resource Manager server keeps track of the availability of the hardware.

This server allows users to subscribe by using web sockets to get notifications on the

changes on the tasks' status. Such notifications consists on forwarding a copy of the up-

loaded JSON.

4.14.1 Prerequisites

The server is implemented using Node.js, and connects to ElasticSearch to store and

access Metadata. Before you start installing the required components, please note that

the installation and setup steps mentioned below assume that you are running a cur-

rent Linux as the operating system. The installation was tested with Ubuntu 16.04 and

17.04 LTS. Before you can proceed, please clone the repository:

 git clone https://github.com/PHANTOM-Platform/Resource-Manager.git;

4.14.2 Dependencies

This project has the following dependencies:

Component Homepage Version

Elasticsearch https://www.elastic.co/products/elasticsearch = 2.4.6

Node.js https://apr.apache.org/ >= 4.5

npm https://www.npmjs.com/ >=1.3.6

4.14.3 Installation

Before the installation of the Resource Manager it is required that npm be installed in

advance. Once it is successfully installed. The Repository and the other required

packages are automatically installed running one of the following scripts. Please

choose the appropriate shell scripts depending on your Operating System:

Shell script for Intel-x86 32bits (tested on Ubuntu):

 bash setup-server-x86-32.sh

or the Shell script for Intel-x86 64bits (tested on Ubuntu):

 bash setup-server-x86-64.sh

or the Shell script for Armv7l 64bits (tested on Raspbian):

 bash setup-server-armv7-64.sh

4.14.4 Start/Stop the server

Starting the PHANTOM Resource Manager by executing the next script. For security

reasons, the services may not start if they are requested from root.

http://localhost:8600/
https://www.elastic.co/products/elasticsearch
https://apr.apache.org/
https://www.npmjs.com/

D5.5 – Final developers‟ documentation

Page 70 Version 1.2 17 May 2019

Confidentiality: Public Distribution

 bash start-resomanager.sh;

The server can be stop with the script:

 bash stop-resomanager.sh;

In case of issues it can be verified that the Resource Manager is running and has ac-

cess to the database with the next scripts.

Test of the Nodejs Front-end running service:

 curl http://localhost:8600;

Test if the Front-end has access to the ElasticSearch database Server.

 curl -s http://localhost:8600/verify_es_connection;

To access to the Web-Interface, access with your internet browser to

http://localhost:8600/resourcemanager.html

4.14.5 Configuration of USERS' accounts

After the installation, and before users can use the Resource Manager, it is needed to

register the users.

The script setup-new-server.sh provides an automatic method for register multiple us-

ers. In particular, the script registers the list of users_ids and passwords from the file

list_of_users.ini.

 bash setup-new-server.sh

NOTICE: For security reasons, users' accounts can be ONLY registered on the server.

Requests from different IPs will be rejected.

4.14.6 Reference manual of the RESTful API

The Reference manual of PHANTOM Resource Manager RESTful API contains description

of each of the implemented methods, with examples of use, and type of possible responses.

The manual is built with the tool APIDOC, and formatted in a friendly HTML, where users

can find a classification of the methods and a searching box. The manual is available online

at https://phantom-platform.github.io/Resource-Manager/docs/ (see next figure).

http://localhost:8600/verify_es_connection
http://localhost:8600/resourcemanager.html
https://phantom-platform.github.io/Resource-Manager/docs/

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 71

Confidentiality: Public Distribution

Figure 20. Screenshot of the Online Reference Manual of the Resource Manager API

4.15 EXECUTION MANAGER

Server which keeps track of the Status of the Users' APPs, and historical brief reports

of previous execution of applications.

4.15.1 Introduction

The PHANTOM Execution Manager server is composed of two components: a web

server and a data storage system. The web server provides various functionalities for

data query and data analysis via RESTful APIs with documents in JSON format. The

server's URL is "http://localhost:8700" by default. The default port for the https ser-

vice is 8710.

The Execution Manager process the collected data by the Monitoring-Server.

http://localhost:8700/

D5.5 – Final developers‟ documentation

Page 72 Version 1.2 17 May 2019

Confidentiality: Public Distribution

Figure 21: Execution Manager

4.15.2 Prerequisites

The server is implemented using Node.js, and connects to ElasticSearch to store and

access Metadata. Before you start installing the required components, please note that

the installation and setup steps mentioned below assume that you are running a cur-

rent Linux as the operating system. The installation was tested with Ubuntu 16.04

LTS. Before you can proceed, please clone the repository:

git clone https://github.com/PHANTOM-Platform/Execution-Manager.git;

4.15.3 Dependencies

This project requires the following dependencies to be installed:

Component Homepage Version

Monitoring-Server https://github.com/PHANTOM-Platform/Monitoring

Elasticsearch https://www.elastic.co/products/elasticsearch = 2.4.6

Node.js https://apr.apache.org/ >= 4.5

npm https://www.npmjs.com/ >= 1.3.6

4.15.4 Installation

Before the installation of the Execution Manager it is required that npm be installed in

advance. Once it is successfully installed. The Repository and the other required

packages are automatically installed running one of the following scripts. The user

can choose the appropriate shell scripts depending on their Operating System:

Shell script for Intel-x86 32bits (tested on Ubuntu):

 bash setup-server-x86-32.sh

or the Shell script for Intel-x86 64bits (tested on Ubuntu):

https://github.com/PHANTOM-Platform/Monitoring
https://www.elastic.co/products/elasticsearch
https://apr.apache.org/
https://www.npmjs.com/
https://github.com/PHANTOM-Platform/Execution-Manager/blob/master/readme.png

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 73

Confidentiality: Public Distribution

 bash setup-server-x86-64.sh

or the Shell script for Armv7l 64bits (tested on Raspbian):

 bash setup-server-armv7-64.sh

The default port is 8700, which can be modified at the file repo_app.js.

4.15.5 Start/Stop the server

Starting the PHANTOM Exec Manager by executing the next script. For security rea-

sons, the services may not start if they are requested from root.

 bash start-execmanager.sh;

The server can be stop with the script:

 bash stop-execmanager.sh;

In case of issues it can be verified that the Execution Manager is running and has ac-

cess to the database with the next scripts.

Test of the Nodejs Front-end running service:

 curl http://localhost:8700;

Test if the Front-end has access to the ElasticSearch database Server.

 curl -s http://localhost:8700/verify_es_connection;

To access to the Web-Interface, access with your internet browser to

http://localhost:8700/executionmanager.html

4.15.6 Configuration of USERS' accounts

After the installation, and user registration is required in order to use the Execution

Manager.

The script setup-new-server.sh provides an automatic method for register multiple us-

ers. In particular, the script registers the list of users_ids and passwords from the file

list_of_users.ini.

 bash setup-new-execmanager-server.sh

NOTICE: For security reasons, users' accounts can be ONLY registered on the server.

Requests from different IPs will be rejected.

4.15.7 Example of use

The folder scripts shows examples of using the PHANTOM Execution-Manager.

Please access to those folders to get more details.

http://localhost:8700/verify_es_connection
http://localhost:8700/executionmanager.html

D5.5 – Final developers‟ documentation

Page 74 Version 1.2 17 May 2019

Confidentiality: Public Distribution

4.15.8 Reference manual of the RESTful API

The Reference manual of PHANTOM Execution Manager RESTful API contains descrip-

tion of each of the implemented methods, with examples of use, and type of possible re-

sponses. The manual is built with the tool APIDOC, and formatted in a friendly HTML,

where users can find a classification of the methods and a searching box. The manual is

available online at https://phantom-platform.github.io/Execution-Manager/docs/ (see next

figure).

Figure 22. Screenshot of the Online Reference Manual of the Execution Manager API

4.16 INTEGRATED REFERENCE SYSTEM USER SCRIPTS

The User-Scripts consist in a set of Python and Bash scripts that helps the user on the

management of the PHANTOM tools deployed on virtual environment of the Integrated

Reference System, and on the automatization of the processing of the application using

PHANTOM tool flow.

4.16.1 System requirements

The User Scripts depend on the Bash scripts developed for Linux environment, the

current mechanism to launch PHANTOM tools is based on „Xterm‟ and their behaviour

was only tested on Linux (Ubuntu 16.04) environment.

To able run some PHANTOM tools they need to be deployed in the same machine:

 Parallelization Toolset;

https://phantom-platform.github.io/Execution-Manager/docs/

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 75

Confidentiality: Public Distribution

 Generic Multi-Objective Mapper and Offline MOM;

 Deployment Manager; and

 Model-Based Testing tools

4.16.2 Dependencies

 Git

 Python3

 Python3 module: websocket-client

 Python3 module: Paramiko

 Xterm

4.16.3 Deployment Procedure

The deployment of the User-Scripts can be made using the git clone mechanism:

This command will download all the scripts

4.16.4 Usage Guide

 Configuration of ‘settings.py’ – The file „settings.py‟ must be configured to ac-

cording to the characteristics of the application and the intentions of the USER. The

„settings.py‟ is divide in 3 main zones:

o Repositories configurations – used for the USER specify the location of

the repositories to be used (localhost or remote location) and credentials.

E.g.:

Set the Repository IP address and port

#repository_ip = "141.58.0.8"

#repository_port = 2777

repository_ip = "localhost"

repository_port = 8000

Authentication credentials

user =

password =

o Application configurations – Used for the USER to indentify application

specific properties:

Name of the application to be used server and by PHANTOM tools to

identify the application:

app_name = "WINGStest3"

$git clone https://github.com/PHANTOM-Platform/PHANTOM-User-Scripts.git

D5.5 – Final developers‟ documentation

Page 76 Version 1.2 17 May 2019

Confidentiality: Public Distribution

Path for the root of the application‟s folder (to upload makefile and cla.in)

root_path = "/home/demo/phantom-tools/Examples/WINGStest3"

Path for the folder with the source code

src_path = "/home/demo/phantom-tools/Examples/WINGStest3/src"

Path for the folder with description files (Component Network and

Platform Description)

desc_path = "/home/demo/phantom-

tools/Examples/WINGStest3/description"

Path for thevfolder with PHANTOM API files

phantom_path = "/home/demo/Desktop/phantom-

tools/PHANTOM_FILES"

Link to the where the marketplace is hosted and name of the folder where

IPCores shoul be stored locally

ipMarket_path = "https://github.com/PHANTOM-Platform/PHANTOM-

IP-Core-Marketplace.git"

ip_folder = "IPCore-MarketPlace"

Path for folder with application inputs

inputs_path = ""

Name of the component network file to be used

CompNetName = "cpn.xml"

Name of the platform description file to be used

PlatDesName = "hw_local.xml"

o Tools Configurations – This section contains the parameters for

configuring the PHANTOM tools. In includes the path for each tool

deployed on the machine. E.g.:

MOM location

MOM_path = "/home/demo/phantom-tools/GenericMOM"

And tool specific arguments. E.g.:

PT_mode = "on" #operation mode: on | off - "on" to run PT normally,

"off" to skip code analysis process

In this section can also be found the property for the address of

the FPGA VM, as well as the SSH port to be used

FPGAVM_ip = “”

FPGAVM_port =

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 77

Confidentiality: Public Distribution

 Run the start script – The last step consists in the execution of script that will: up-

load all the needed files to the specified repositories; register the application on the

Application manager; and configure and launch each tool. To start this script run:

This command as several options as shown the when using the „-h‟ flag:

demo@ubuntu:~/phantom-tools/User-tools$./start-PHANTOM.py

demo@ubuntu:~/Desktop/phantom-tools/User-tools$./start-PHANTOM.py -h
usage: start-PHANTOM.py [-h] [-u] [-d] [-i] [-c] [-m] [-p]

Tool to support the execution of an application on PHANTOM Framework

optional arguments:
 -h, --help show this help message and exit
 -u, --noUpload Do not (re)upload the application to the repository.
 (Application should be already in repository)
 -d, --onlyDesc Only re-uploads the description files to the repository)
 -i, --skipInputs Do not (re)upload the application inputs to the
 repository. (Inputs should be already in repository)
 -c, --clean Clean all the data in repositories and temporary cache
 on PHANTOM tools. Automatically update PHANTOM_FILES
 (-p)
 -m, --ipmarket Uploads the IP Core Market place to the repository
 -p, --phantomfiles Uploads the PHANTOM files (PHANTOM API and Monitoring
 API)

D5.5 – Final developers‟ documentation

Page 78 Version 1.2 17 May 2019

Confidentiality: Public Distribution

5. CONCLUSION

This document depicts the final deployment configurations that are needed for deploying

the PHANTOM tools/servers, as well as details about the applications‟ placement in the

framework and its compliance to the PHANTOM Programming Model for its analysis

and deployment, as they were formed during the latest integration activities. The instruc-

tions in this guide, can assure the reader that, if followed correctly, the tools will be suc-

cessfully installed, configured and deployed on any machine(s) that satisfy the dependen-

cies that are described for each individual tool.

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 79

Confidentiality: Public Distribution

6. REFERENCES

[1] Source code available at https://github.com/PHANTOM-Platform.

[2] Demonstrations and tutorials available at

https://www.youtube.com/channel/UCtl2wQYh_Nj3HbyFoM1XHqQ

[3] G. Clinton and T. Zachary, ElasticSearch: The Definitive Guide, O'Reilly, 2015.

[4] R. Kuc and M. Rogozinski, ElasticSearch Server, second edition, PACKT publishing,

2014.

[5] B. Dixit, ElasticSearch Essentials Paperback, 2016.

[6] A. Paro, ElasticSearch Cookbook , PACKT publishing, 2013

[7] Eclipse Modeling Project, https://projects.eclipse.org/projects/modeling

[8] Eclipse Titan, https://projects.eclipse.org/projects/tools.titan

[9] Eclipse Titan Download, https://projects.eclipse.org/projects/tools.titan/downloads

[10] eclipse_titan.core, https://github.com/eclipse/titan.core

[11] INCITS 499-2013, Information technology – Next Generation Access Control –

Functional Architecture, InterNational Committee for Information Technology

Standards, Cyber Security technical committee 1, 2013

https://github.com/PHANTOM-Platform
https://www.youtube.com/channel/UCtl2wQYh_Nj3HbyFoM1XHqQ
https://projects.eclipse.org/projects/modeling
https://github.com/eclipse/titan.core

D5.5 – Final developers‟ documentation

Page 80 Version 1.2 17 May 2019

Confidentiality: Public Distribution

A.1. Example Application

Component C0
#include "../phantom/phantom.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stdint.h>

#include "example_lib.h"

void *C0() {

 phantom_monitor *monitor = phantom_monitor_init();

 phantom_mf_start(monitor);

 #pragma phantom queue inQueue00

 phantom_queue *C0_Queue0 = phantom_queue_init("inQueue00");

 #pragma phantom signal inSignal0

 phantom_signal *signal = phantom_signal_init("inSignal0");

 uint8_t *a[3];

 uint32_t size;

 int i;

 for(i=0; i<3; i++) {

 if(i==0) size = 2;

 else if(i==1) size = 3;

 else if(i==2) size = 5;

 a[i] = (uint8_t

*)malloc(size*sizeof(uint8_t)+sizeof(uint32_t));

 memcpy(a[i],uint32_t_to_uint8_t(size),sizeof(uint32_t));

 }

 for(i=0; i<10; i++) {

 if(i<2) a[0][i+sizeof(uint32_t)] = i;

 else if(i<5) a[1][i-2+sizeof(uint32_t)] = i;

 else a[2][i-5+sizeof(uint32_t)] = i;

 }

 for(i=0; i<3; i++) {

 phantom_queue_put(C0_Queue0,a[i]);

 }

 phantom_wait(signal);

 uint8_t *d[3];

 for(i=0; i<3; i++) {

 d[i] = (uint8_t *)malloc(1+sizeof(uint32_t));

 memcpy(d[i],uint32_t_to_uint8_t(1),sizeof(uint32_t));

 d[i][sizeof(uint32_t)] = 20 + i;

 printf("Putting item: [%d] in

queue...\n\n",d[i][sizeof(uint32_t)]);

 phantom_queue_put(C0_Queue0,d[i]);

 }

 sleep(10);

 phantom_mf_end(monitor);

}

Component C1
#include "../phantom/phantom.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stdint.h>

#include "example_lib.h"

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 81

Confidentiality: Public Distribution

void *C1() {

 phantom_monitor *monitor = phantom_monitor_init();

 phantom_mf_start(monitor);

 #pragma phantom queue outQueue01

 phantom_queue *C1_Queue0 = phantom_queue_init("outQueue01");

 phantom_shared *shared_object = phantom_shared_init("outShared0");

 #pragma phantom signal inSignal1

 phantom_signal *signal1 = phantom_signal_init("inSignal1");

 #pragma phantom signal outSignal2

 phantom_signal *signal2 = phantom_signal_init("outSignal2");

 uint8_t *a[6];

 int i,j;

 uint32_t size;

 for(i=0; i<6; i++) {

a[i] = (uint8_t *)phantom_queue_get(C1_Queue0);

 size = uint8_t_to_uint32_t(a[i]);

 printf("Receiver: printing a[%d] --> ",i);

 for(j=0; j<size; j++)

 printf("%d ",a[i][j+sizeof(uint32_t)]);

 printf("\n");

 }

 phantom_notify(signal1);

 #pragma phantom shared outShared0

 int *shared_data1 = (int *)malloc(sizeof(int *) * 10);

 printf("\nC1: Local data -> ");

 for(i=0; i<10; i++) {

 shared_data1[i] = i;

 printf("%d ",shared_data1[i]);

 }

 printf("\n\n");

 phantom_wait(signal2);

 phantom_synchronize(shared_object,shared_data1,0);

 printf("\nC1: Synced data -> ");

 for(i=0; i<10; i++) {

 printf("%d ",shared_data1[i]);

 }

 printf("\n\n");

 sleep(5);

 phantom_mf_end(monitor);

}

Component C2
#include "../phantom/phantom.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stdint.h>

#include "example_lib.h"

void *C2() {

D5.5 – Final developers‟ documentation

Page 82 Version 1.2 17 May 2019

Confidentiality: Public Distribution

 phantom_monitor *monitor = phantom_monitor_init();

 phantom_mf_start(monitor);

 #pragma phantom queue outQueue02

 phantom_queue *C2_Queue0 = phantom_queue_init("outQueue02");

 phantom_shared *shared_object = phantom_shared_init("inShared0");

 #pragma phantom signal outSignal0

 phantom_signal *signal1 = phantom_signal_init("outSignal0");

 #pragma phantom signal outSignal1

 phantom_signal *signal2 = phantom_signal_init("outSignal1");

 #pragma phantom signal inSignal2

 phantom_signal *signal3 = phantom_signal_init("inSignal2");

 uint8_t *a;

 uint8_t *b;

 uint8_t *c;

 a = (uint8_t *)malloc(2*sizeof(uint8_t)+sizeof(uint32_t));

 b = (uint8_t *)malloc(3*sizeof(uint8_t)+sizeof(uint32_t));

 c = (uint8_t *)malloc(5*sizeof(uint8_t)+sizeof(uint32_t));

 memcpy(a,uint32_t_to_uint8_t(2),sizeof(uint32_t));

 memcpy(b,uint32_t_to_uint8_t(3),sizeof(uint32_t));

 memcpy(c,uint32_t_to_uint8_t(5),sizeof(uint32_t));

 int i, j;

 for(i=0; i<10; i++) {

 if(i<2) a[i+sizeof(uint32_t)] = i+10;

 else if(i<5) b[i-2+sizeof(uint32_t)] = i+10;

 else c[i-5+sizeof(uint32_t)] = i+10;

 }

 phantom_queue_put(C2_Queue0,a);

 phantom_queue_put(C2_Queue0,b);

 phantom_queue_put(C2_Queue0,c);

 phantom_notify(signal1);

 phantom_wait(signal2);

 uint8_t *d[3];

 uint32_t size;

 for(i=0; i<3; i++) {

 d[i] = (uint8_t *)phantom_queue_get(C2_Queue0);

 size = uint8_t_to_uint32_t(d[i]);

 printf("C2: printing d[%d] --> ",i);

 for(j=0; j<size; j++)

 printf("%d ",d[i][j+sizeof(uint32_t)]);

 printf("\n");

 }

 #pragma phantom shared inShared0

 int *shared_data2 = (int *)malloc(sizeof(int *) * 10);

 printf("\nC2: Outgoing data -> ");

 for(i=0; i<10; i++) {

 shared_data2[i] = d[i%3][sizeof(uint32_t)];

 printf("%d ",shared_data2[i]);

 }

 printf("\n\n");

 phantom_synchronize(shared_object,shared_data2,1);

 phantom_notify(signal3);

 sleep(7);

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 83

Confidentiality: Public Distribution

 phantom_mf_end(monitor);

}

D5.5 – Final developers‟ documentation

Page 84 Version 1.2 17 May 2019

Confidentiality: Public Distribution

A.2. Programming Model functions & annotations - final documentation

Shared

A block of data shared between two or more components. This protocol is mainly used for

data exchange.

void phantom_synchronize(phantom_shared *item, void *local_data, int dir);

Causes the local view of the item to be updated according to the corresponding data on the

shared memory if the dir variable has the value 0. On the opposite case, the shared memory

is updated according to the local view of the item.

Queue

A FIFO queue of the fixed size for the blocking data exchange between all components.

This protocol is used for data exchange and control flow.

void *phantom_queue_get(phantom_queue *queue);

Returns and deletes the first item in the queue. Blocks until data is inserted in the queue.

bool phantom_queue_put(phantom_queue *queue,void *item);

Puts item at the end of the queue. Returns true if successful.

void *phantom_queue_peek(phantom_queue *queue);

Returns the first item in the queue. Returns NULL if queue is empty.

uint32_t phantom_queue_count(phantom_queue *queue);

Returns the number of items inside the queue.

Signal

A protocol used to coordinate the execution of components.

int phantom_notify(phantom_signal *signal);

Blocks the current thread/process until the signal in question is notified.

int phantom_wait(phantom_signal *signal);

Unblock a random single thread/process waiting on the signal.

void phantom_barrier(phantom_signal *signal);

A barrier function able to wait until all threads or processes, before that call have finished

their work.

int phantom_notifyall(phantom_signal *signal);

Unblock all threads/processes waiting on the signal.

Mutex

A protocol used to enforce mutual exclusion, for example to protect the integrity of shared

data.

int phantom_lock(phantom_mutex *mutex);

Block until the current mutex can be owned by the requesting component.

int phantom_unlock(phantom_mutex *mutex);

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 85

Confidentiality: Public Distribution

Release the current mutex, if it is currently owned. Any components waiting on phan-

tom_mutex_lock() can then recontest for the mutex. If multiple components are blocked then

a random one is awarded the lock.

int phantom_trylock(phantom_mutex *mutex);

Attempt to lock the mutex, but do not block if the attempt was unsuccessful. Returns true if

the mutex was locked and false if not.

void phantom_mf_start(phantom_monitor *monitor)

Registers the start of the component. If not used, the start of the execution will be

automatically registered which may not identify exactly the start of the computationally

intensive part of the component.

void phantom_mf_user_metric(phantom_monitor *monitor, char *metric_name,

int value)

Registers a user defined metric that the user may find useful.

void phantom_mf_send(phantom_monitor *monitor)

Sends the already gathered data by the Monitoring Client to the Monitoring Server and

clears the buffer space.

void phantom_mf_end(phantom_monitor *monitor)

Registers the end of the component. If not used, the end of the execution will be

automatically registered which may not identify exactly the end of the computationally

intensive part of the component.

File Operations

FILE * phantom_fopen (const char * filename, const char * mode)

Opens the file whose name is specified in the parameter filename and associates it with

a stream that can be identified in future operations by the FILE pointer returned.

o filename – is a C string describing items in the PHANTOM repository. Paths

should be case sensitive, absolute paths, with the forward slash character as a

path separator.

o mode is treated the same as mode in the POSIX fopen function.

int phantom_fclose (FILE * stream)

Closes the file associated with the stream and disassociates it. All internal buffers

associated with the stream are disassociated from it and flushed: the content of any

unwritten output buffer is written and the content of any unread input buffer is

discarded. Even if the call fails, the stream passed as parameter will no longer be

associated with the file nor its buffers.

o stream - Pointer to a FILE object that specifies the stream to be closed.

o If the stream is successfully closed, a zero value is returned.

On failure, EOF is returned.

http://www.cplusplus.com/FILE
http://www.cplusplus.com/FILE
http://www.cplusplus.com/EOF

D5.5 – Final developers‟ documentation

Page 86 Version 1.2 17 May 2019

Confidentiality: Public Distribution

int phantom_fflush (FILE * stream)

If the given stream was open for writing any unwritten data in its output buffer is

written to the file. The stream remains open.

size_t phantom_fwrite (const void * ptr, size_t size, size_t count, FILE * stream)

Writes an array of count elements, each one with a size of size bytes, from the block of

memory pointed by ptr to the current position in the stream.

o ptr – Pointer to the input buffer

o size – Size in bytes of each element to write

o count – Number of elements to write

o stream – A pointer to a FILE object as returned from phantom_fopen

o The total number of elements successfully written is returned. Sets ferror if an

error occurred.

size_t phantom_fread (void * ptr, size_t size, size_t count, FILE * stream)

Reads an array of count elements, each one with a size of size bytes, from

the stream and stores them in the block of memory specified by ptr.

o ptr – Pointer to the output buffer

o size – Size in bytes of each element to read

o count – Number of elements to read

o stream – A pointer to a FILE object as returned from phantom_fopen

o The total number of elements successfully read is returned.

int phantom_fgetpos (FILE * stream, fpos_t * pos)

Retrieves the current position in the stream.

o stream – Pointer to the stream object.

o pos – An allocated fpos_t which is filled with the current position.

o Returns zero on success or a platform-specific error number.

int phantom_fseek (FILE * stream, long int offset, int origin)

Sets the position indicator associated with the stream to a new position. If the stream is

binary, the new position is offset + origin. If the stream is text, then offset shall be 0.

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 87

Confidentiality: Public Distribution

Returns zero on success or a platform-specific error number.

int phantom_fileno(FILE *stream)

Returns the integer file descriptor associated with the stream pointed to by stream.

FILE *phantom_fdopen(int fd, const char *mode)

Associates a stream with the existing file descriptor, fd. The mode of the stream (one of

the values: “r”, “r+”, “w”, “w+”, “a”, “a+”) must be compatible with the mode of the

file descriptor. The file position indicator of the new stream is set to that belonging to

fd, and the error and end-of-file indicators are cleared. Modes “w” or “w+” do not cause

truncation of the file. The file descriptor is not dup‟ed, and will be closed when the

script created by phantom_fdopen() is closed. The result of applying phantom_fdopen()

to a shared memory object is undefined.

int phantom_get_fd_flags(int fd, int value)

Retrieves the current position in the stream.

long int phantom_ftell(FILE *stream)

Returns the current value of the position indicator of the stream. For binary streams, this

is the number of bytes from the beginning of the file. For text streams, the numerical

value may not be meaningful but can still be used to restore the position to the same

position later using phantom_fseek.

Optimization Annotations

#pragma function no-side-effects

Function called doesn‟t have any side effects on global memory (only local). Pointers

passed to it though are accessed manipulating data at the corresponding addresses.

#pragma function pure

Function call doesn‟t have any side effects.

#pragma loop static-loop-bounds

Loop bounds can be statically determined.

#pragma [function | loop] no-pointer-aliasing

Function or loop doesn‟t include any pointer aliasing when accessing memory

addresses.

#pragma [function | loop] no-dynamic-pointers

Function or loop doesn‟t include any pointers that have dynamically allocated memory

space to them.

#pragma [function | loop] static-vectors

Function or loop doesn‟t include any vectors with dynamically modified size.

The platform will verify these pragmas (when possible) in order to assist the developer,

and error if they are violated, but in general they are understood as guarantees from the

programmer to the platform.

D5.5 – Final developers‟ documentation

Page 88 Version 1.2 17 May 2019

Confidentiality: Public Distribution

Serialization interfaces

Interface for serialization and deserialization of simple data types, strings, arrays, C++

vectors, and C++ vector of vectors.

 Simple data types

 size_t serialize_val(type in, char *out);

 size_t deserialize_val(type *out, char *in);

 type must be one of the following:

 size_t

 int8_t

 int32_t

 uint32_t

 double

 float

 bool

in is the serialization/deserialization input buffer.

out is the output buffer.

 Strings

size_t serialize_str(type in, char *out);

type must be one of the following:

 string

 const int8_t*

in is the serialization input buffer.

out is the output buffer.

size_t deserialize_str(type *out, char *in);

type must be one of the following:

 string

 const int8_t

in is the deserialization input buffer.

out is the output buffer.

 C arrays

size_t serialize_arr(type *arr, size_t size, char *out);

size_t deserialize_arr(type *arr, size_t size, char *in);

type must be one of the following:

 const int8_t

 double

 D5.5 – Final developers‟ documentation

17 May 2019 Version 1.2 Page 89

Confidentiality: Public Distribution

 int32_t

arr is the serialization/deserialization input/output buffer.

size is the size of arr

in is the deserialization input buffer.

out is the output buffer

 C++ vectors

size_t serialize_vec(vector<type> *vec, char *out, bool w_size);

size_t deserialize_vec(vector<type> *vec, char *in, bool r_size);

type must be one of the following:

 bool

 double

 float

 int32_t

w_size is used to indicate if the size of the vector must be prepended to out.

r_size is used to indicate if the size of the vector must be read from in.

vec is the serialization/deserialization input/output buffer.

in is the deserialization input buffer.

out is the output buffer

 Matrices

o C++ vector of vectors

size_t serialize_mat(vector<vector<type> > *mat, char *out,

bool w_size);

size_t deserialize_mat(vector<vector<type> > *mat, char *in,

bool r_size);

type must be one of the following:

 bool

 double

 float

 int32_t

w_size is used to indicate if the size of the vector must be prepended to out.

r_size is used to indicate if the size of the vector must be read from in.

mat is the serialization/deserialization input/output buffer.

in is the deserialization input buffer.

out is the output buffer.

o C array of arrays

size_t serialize_mat(type **mat, size_t dim1, size_t dim2,

char *out);

size_t deserialize_mat(type **mat, size_t dim1, size_t dim2,

char *in);

D5.5 – Final developers‟ documentation

Page 90 Version 1.2 17 May 2019

Confidentiality: Public Distribution

type must be one of the following:

 const int8_t

dim1 and dim2 correspond to the size of the first and second dimension of the

matrix.

mat is the serialization/deserialization input/output buffer.

in is the deserialization input buffer.

out is the output buffer.

 3D Matrices

size_t serialize_3dMat(vector<vector<vector<type> > > *mat, char

*out, bool w_size);

size_t deserialize_3dMat(vector<vector<vector<type> > > *mat, char

*in, bool r_size);

type must be one of the following:

 int32_t

w_size is used to indicate if the size of the vector must be prepended to out.

r_size is used to indicate if the size of the vector must be read from in.

mat is the serialization/deserialization input/output buffer.

in is the deserialization input buffer.

out is the output buffer.

